显著超越流行长短时记忆网络,阿里提出DFSMN语音识别声学模型
在语音顶会ICASSP,阿里巴巴语音交互智能团队的poster论文提出一种改进的前馈序列记忆神经网络结构,称之为深层前馈序列记忆神经网络(DFSMN)。研究人员进一步将深层前馈序列记忆神经网络和低帧率(LFR)技术相结合,构建LFR-DFSMN语音识别声学模型。
该模型在大词汇量的英文识别和中文识别任务上都可以取得相比于目前最流行的基于长短时记忆单元的双向循环神经网络(BLSTM)的识别系统显著的性能提升。而且LFR-DFSMN在训练速度,模型参数量,解码速度,而且模型的延时上相比于BLSTM都具有明显的优势。
研究背景
近年来, 深度神经网络成为了大词汇量连续语音识别系统中的主流声学模型。由于语音信号具有很强的长时相关性,因而目前普遍流行的是使用具有长时相关建模的能力的循环神经网络(RNN),例如LSTM以及其变形结构。循环神经网络虽