预训练模型迁移学习
摘要:如何快速简便地解决图像分类问题呢?本文通过使用Keras及一个预训练模型的实例,教你如何通过迁移学习来解决这个问题。

深度学习正在迅速成为人工智能应用开发的主要工具。在计算机视觉、自然语言处理和语音识别等领域都已有成功的案例。
深度学习擅长解决的一个问题是图像分类。图像分类的目标是根据一组合理的类别对指定的图片进行分类。从深度学习的角度来看,图像分类问题可以通过迁移学习的方法来解决。
本文介绍了如何通过迁移学习来解决图像分类的问题。本文中所提出的实现方式是基于Python语言的Keras。
本文结构:
1)迁移学习
2)卷积神经网络
3)预训练模型的复用
4)迁移学习过程
5)深度卷积神经网络上的分类器
6)示例
7)总结
1、迁移学习
迁移学习在计算机视觉领域中是一种很流行的方法,因为它可以建立精确的模型,耗时更短。利用迁移学习,不是从零开始学习