首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/3874284/blog/18687937

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Rust 性能提升“最后一公里”:详解 Profiling 瓶颈定位与优化|得物技术

一、Profiling:揭示性能瓶颈的"照妖镜" 在过去的一年里,我们团队完成了一项壮举:将近万核的 Java 服务成功迁移到 Rust,并收获了令人瞩目的性能提升。我们的实践经验已在《RUST练习生如何在生产环境构建万亿流量》一文中与大家分享。然而,在这次大规模迁移中,我们观察到一个有趣的现象:大多数服务在迁移后性能都得到了显著提升,但有那么一小部分服务,性能提升却不尽如人意,仅仅在 10% 左右徘徊。 这让我们感到疑惑。明明已经用上了性能"王者"Rust,为什么还会遇到瓶颈?为了解开这个谜团,我们决定深入剖析这些"低提升"服务。今天,我就来和大家分享,我们是如何利用 Profiling 工具,找到并解决写入过程中的性能瓶颈,最终实现更高性能飞跃的! 在性能优化领域,盲目猜测是最大的禁忌。你需要一把锋利的"手术刀",精准地找到问题的根源。在 Rust 生态中,虽然不像 Java 社区那样拥有 VisualVM 或 JProfiler 这类功能强大的成熟工具,但我们依然可以搭建一套高效的性能分析体系。 为了在生产环境中实现高效的性能监控,我们引入了 Jemalloc 内存分配器和 pp...

许多 AI 智能体评测基准并不可靠

编者按: 当我们对 AI 智能体进行能力评估时,是真的在测量它们的真实水平吗?当前广泛使用的基准测试是否如我们想象的那样可靠和准确? 我们今天为大家带来的文章,作者的核心观点是:当前许多 AI 智能体基准测试存在严重缺陷,亟需建立更严谨的评估框架。 本文提供了一套系统性的解决方案 ------ AI 智能体基准测试核查清单(ABC)。 这个包含 43 个检查项目的创新框架,不仅能够帮助开发者识别现有基准测试的潜在陷阱,还能指导构建真正可靠的评估体系。 本文系原作者观点,Baihai IDP 仅进行编译分享 作者 | Daniel Kang 编译 | 岳扬 基准测试[1]是评估人工智能系统优势和局限性的基础,对研究指导[2]和行业发展[3]至关重要。随着 AI 智能体从研究演示阶段迈向关键任务应用领域[4-6],研究人员和实践者正着手开发相应的基准测试,以全面衡量其能力边界与性能短板。这些 AI 智能体基准测试在任务设定(例如,通常需要模拟现实场景)和评估方式(例如,缺少标准答案标签)上都比传统 AI 基准测试复杂得多,因此需要付出更大的努力来确保其可靠性。 遗憾的是,当前许多 AI 智...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册