得物社区推荐精排模型演进
1.背景 得物社区是一大批年轻人获取潮流信息、分享日常生活的潮流生活社区。其中用户浏览的信息,进行个性化的分发,是由推荐系统来决策完成的。目前得物社区多个场景接入了推荐算法,包括首页推荐双列流、沉浸式视频推荐、分类tab推荐流、直播推荐流等多个场景,为了给用户提供更好的服务和体验,我们从整个推荐系统维度为相关服务做了大量优化。现在主流的推荐系统都会有召回、粗排、精排和机制等多个模块组成,本文主要介绍我们在精排层面演进过程中做的一些工作和思考。 2.挑战和解法 用户在与信息流交互过程中,会产生点击、阅读、点赞、关注、收藏、评论和负反馈等行为,一般是业务关心的核心指标,也可作为算法同学建模的信号。其中,点击是用户一系列行为轨迹的入口,相对不稀疏,往往是一个信息流推荐系统初期最关注的目标之一。如何对用户兴趣进行精准建模,是这些年来推荐系统在工业界从初出茅庐到大展身手的过程中始终热门的主题。在工业界中一个好的业务建模范式是在一定资源约束下,做好服务于业务目标的可迭代的系统优化,对于推荐系统来说,需要考虑系统引擎、计算资源、模型迭代和维护的人力、系统和模型的可迭代性以及多团队合作等多方面因素下,...
