开箱即用的预训练模型,轻松实现大规模视频分类?
至2020年3月,我国短视频用户规模为7.73亿,占网民整体的85.6%,每天有大量 UGC 短视频被生产、分发和消费。如果你是一名短视频用户一定会发现,这些 App 总是特别懂你的心思,比如一些美食短视频就总能在合适的时间、推荐合适的菜谱,让小伙伴们不必为晚餐吃什么而发愁。让你不仅暗自感叹,它为什么如此懂自己? 之所以这些短视频 App 可以如此懂自己,得益于人工智能的视频分类技术。高效的视频分类技术让信息的分发更快地触及目标人群,让 App 变得更有温度。 面对海量的视频数据,如何推荐用户感兴趣的视频? 互联网视频分类任务的目标是理解视频的语义,并给视频打上标签,标签包括不限于美食、旅游、影视、游戏等等。标签越精细、在视频分发和推荐时,准确率越高。 熟悉深度学习的同学们都知道,数据集对于算法的研究起着非常重要的作用。对于视频分类任务而言,网络上虽然有大量用户上传的视频数据,但它们大多缺少类别标签,无法直接用于模型训练。在学术界,Kinetics 系列是最热门的视频分类数据集,但其数据量(以Kinetics-400为例,包含23万个视频)与当前国内主流APP的数据量(千万/亿/十亿量...
