首页 文章 精选 留言 我的

精选列表

搜索[面试],共4913篇文章
优秀的个人博客,低调大师

精心整理了15道面试官喜欢问的MyBatis面试

1、什么是 MyBatis?答:MyBatis 是一个可以自定义 SQL、存储过程和高级映射的持久层框架。2、讲下 MyBatis 的缓存答:MyBatis 的缓存分为一级缓存和二级缓存,一级缓存放在 session 里面,默认就有,二级缓存放在它的命名空间里,默认是不打开的,使用二级缓存属性类需要实现 Serializable 序列化接口(可用来保存对象的状态),可在它的映射文件中配置3、Mybatis 是如何进行分页的?分页插件的原理是什么?答:1)Mybatis 使用 RowBounds 对象进行分页,也可以直接编写 sql 实现分页,也可以使用Mybatis 的分页插件。2)分页插件的原理:实现 Mybatis 提供的接口,实现自定义插件,在插件的拦截方法内拦截待执行的 sql,然后重写 sql。举例:select from student,拦截 sql 后重写为:select t. from (select * from student)tlimit 0,104、简述 Mybatis 的插件运行原理,以及如何编写一个插件?答:1)Mybatis 仅可以编写针对 ParameterHandler、ResultSetHandler、StatementHandler、Executor 这 4 种接口的插件,Mybatis 通过动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这 4 种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler 的 invoke()方法,当然,只会拦截那些你指定需要拦截的方法。2)实现 Mybatis 的 Interceptor 接口并复写 intercept()方法,然后在给插件编写注解,指定要拦截哪一个接口的哪些方法即可,记住,别忘了在配置文件中配置你编写的插件。5、Mybatis 动态 sql 是做什么的?都有哪些动态 sql?能简述一下动态 sql 的执行原理不?答:1)Mybatis 动态 sql 可以让我们在 Xml 映射文件内,以标签的形式编写动态 sql,完成逻辑判断和动态拼接 sql 的功能。2)Mybatis 提供了 9 种动态 sql 标签:trim|where|set|foreach|if|choose|when|otherwise|bind。3)其执行原理为,使用 OGNL 从 sql 参数对象中计算表达式的值,根据表达式的值动态拼接 sql,以此来完成动态 sql 的功能。6、#{}和${}的区别是什么?答:1)#{}是预编译处理,${}是字符串替换。2)Mybatis 在处理#{}时,会将 sql 中的#{}替换为?号,调用 PreparedStatement 的 set 方法来赋值;3)Mybatis 在处理${}时,就是把${}替换成变量的值。4)使用#{}可以有效的防止 SQL 注入,提高系统安全性。7、为什么说 Mybatis 是半自动 ORM 映射工具?它与全自动的区别在哪里?答:Hibernate 属于全自动 ORM 映射工具,使用 Hibernate 查询关联对象或者关联集合对象时,可以根据对象关系模型直接获取,所以它是全自动的。而 Mybatis 在查询关联对象或关联集合对象时,需要手动编写 sql 来完成,所以,称之为半自动 ORM 映射工具。8、Mybatis 是否支持延迟加载?如果支持,它的实现原理是什么?答:1)Mybatis 仅支持 association 关联对象和 collection 关联集合对象的延迟加载,association指的就是一对一,collection 指的就是一对多查询。在 Mybatis 配置文件中,可以配置是否启用延迟加载 lazyLoadingEnabled=true|false。2)它的原理是,使用 CGLIB 创建目标对象的代理对象,当调用目标方法时,进入拦截器方法,比如调用 a.getB().getName(),拦截器 invoke()方法发现 a.getB()是 null 值,那么就会单独发送事先保存好的查询关联 B 对象的 sql,把 B 查询上来,然后调用 a.setB(b),于是 a 的对象 b 属性就有值了,接着完成 a.getB().getName()方法的调用。这就是延迟加载的基本原理。9、MyBatis 与 Hibernate 有哪些不同?答:1)Mybatis 和 hibernate 不同,它不完全是一个 ORM 框架,因为 MyBatis 需要程序员自己编写 Sql 语句,不过 mybatis 可以通过 XML 或注解方式灵活配置要运行的 sql 语句,并将java 对象和 sql 语句映射生成最终执行的 sql,最后将 sql 执行的结果再映射生成 java 对象。2)Mybatis 学习门槛低,简单易学,程序员直接编写原生态 sql,可严格控制 sql 执行性能,灵活度高,非常适合对关系数据模型要求不高的软件开发,例如互联网软件、企业运营类软件等,因为这类软件需求变化频繁,一但需求变化要求成果输出迅速。但是灵活的前提是 mybatis 无法做到数据库无关性,如果需要实现支持多种数据库的软件则需要自定义多套 sql 映射文件,工作量大。3)Hibernate 对象/关系映射能力强,数据库无关性好,对于关系模型要求高的软件(例如需求固定的定制化软件)如果用 hibernate 开发可以节省很多代码,提高效率。但是Hibernate 的缺点是学习门槛高,要精通门槛更高,而且怎么设计 O/R 映射,在性能和对象模型之间如何权衡,以及怎样用好 Hibernate 需要具有很强的经验和能力才行。总之,按照用户的需求在有限的资源环境下只要能做出维护性、扩展性良好的软件架构都是好架构,所以框架只有适合才是最好。10、MyBatis 的好处是什么?答:1)MyBatis 把 sql 语句从 Java 源程序中独立出来,放在单独的 XML 文件中编写,给程序的维护带来了很大便利。2)MyBatis 封装了底层 JDBC API 的调用细节,并能自动将结果集转换成 Java Bean 对象,大大简化了 Java 数据库编程的重复工作。3)因为 MyBatis 需要程序员自己去编写 sql 语句,程序员可以结合数据库自身的特点灵活控制 sql 语句,因此能够实现比 Hibernate 等全自动 orm 框架更高的查询效率,能够完成复杂查询。11、简述 Mybatis 的 Xml 映射文件和 Mybatis 内部数据结构之间的映射关系?答:Mybatis 将所有 Xml 配置信息都封装到 All-In-One 重量级对象 Configuration 内部。在Xml 映射文件中,标签会被解析为 ParameterMap 对象,其每个子元素会被解析为 ParameterMapping 对象。标签会被解析为 ResultMap 对象,其每个子元素会被解析为 ResultMapping 对象。每一个、、、标签均会被解析为 MappedStatement 对象,标签内的 sql 会被解析为 BoundSql 对象。12、什么是 MyBatis 的接口绑定,有什么好处?答:接口映射就是在 MyBatis 中任意定义接口,然后把接口里面的方法和 SQL 语句绑定,我们直接调用接口方法就可以,这样比起原来了 SqlSession 提供的方法我们可以有更加灵活的选择和设置.13、接口绑定有几种实现方式,分别是怎么实现的?答:接口绑定有两种实现方式,一种是通过注解绑定,就是在接口的方法上面加上@Select@Update 等注解里面包含 Sql 语句来绑定,另外一种就是通过 xml 里面写 SQL 来绑定,在这种情况下,要指定 xml 映射文件里面的 namespace 必须为接口的全路径名.14、什么情况下用注解绑定,什么情况下用 xml 绑定?答:当 Sql 语句比较简单时候,用注解绑定;当 SQL 语句比较复杂时候,用 xml 绑定,一般用xml 绑定的比较多15、MyBatis 实现一对一有几种方式?具体怎么操作的?答:有联合查询和嵌套查询,联合查询是几个表联合查询,只查询一次,通过在 resultMap 里面配置 association 节点配置一对一的类就可以完成;嵌套查询是先查一个表,根据这个表里面的结果的外键 id,去再另外一个表里面查询数据,也是通过 association 配置,但另外一个表的查询通过 select 属性配置。 喜欢文章记得点个赞,感谢支持!

优秀的个人博客,低调大师

金三银四面试季节之Java 核心面试技术点 - JVM 小结

更多关于Java的文章请访问: 描述一下 JVM 的内存区域 程序计数器(PC,Program Counter Register)。在 JVM 规范中,每个线程都有它自己的程序计数器,并且任何时间一个线程都只有一个方法在执行,也就是所谓的当前方法。程序计数器会存储当前线程正在执行的 Java 方法的 JVM 指令地址;或者,如果是在执行本地方法,则是未指定值(undefined)。 Java 虚拟机栈(Java Virtual Machine Stack),早期也叫 Java 栈。每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次的 Java 方法调用。前面谈程序计数器时,提到了当前方法;同理,在一个时间点,对应的只会有一个活动的栈帧,通常叫作当前帧,方法所在的类叫作当前类。如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,成为新的当前帧,一直到它返回结果或者执行结束。JVM 直接对 Java 栈的操作只有两个,就是对栈帧的压栈和出栈。栈帧中存储着局部变量表、操作数(operand)栈、动态链接、方法正常退出或者异常退出的定义等。 堆(Heap),它是 Java 内存管理的核心区域,用来放置 Java 对象实例,几乎所有创建的Java 对象实例都是被直接分配在堆上。堆被所有的线程共享,在虚拟机启动时,我们指定的“Xmx”之类参数就是用来指定最大堆空间等指标。理所当然,堆也是垃圾收集器重点照顾的区域,所以堆内空间还会被不同的垃圾收集器进行进一步的细分,最有名的就是新生代、老年代的划分。 方法区(Method Area)。这也是所有线程共享的一块内存区域,用于存储所谓的元(Meta)数据,例如类结构信息,以及对应的运行时常量池、字段、方法代码等。由于早期的 Hotspot JVM 实现,很多人习惯于将方法区称为永久代(Permanent Generation)。Oracle JDK 8 中将永久代移除,同时增加了元数据区(Metaspace)。 运行时常量池(Run-Time Constant Pool),这是方法区的一部分。如果仔细分析过反编译的类文件结构,你能看到版本号、字段、方法、超类、接口等各种信息,还有一项信息就是常量池。Java 的常量池可以存放各种常量信息,不管是编译期生成的各种字面量,还是需要在运行时决定的符号引用,所以它比一般语言的符号表存储的信息更加宽泛。 本地方法栈(Native Method Stack)。它和 Java 虚拟机栈是非常相似的,支持对本地方法的调用,也是每个线程都会创建一个。在 Oracle Hotspot JVM 中,本地方法栈和 Java 虚拟机栈是在同一块儿区域,这完全取决于技术实现的决定,并未在规范中强制。 造成OOM的原因有哪几种? 堆内存不足是最常见的 OOM 原因之一,抛出的错误信息是“java.lang.OutOfMemoryError:Java heap space”,原因可能千奇百怪,例如,可能存在内存泄漏问题;也很有可能就是堆的大小不合理,比如我们要处理比较可观的数据量,但是没有显式指定 JVM 堆大小或者指定数值偏小;或者出现 JVM 处理引用不及时,导致堆积起来,内存无法释放等。 虚拟机栈和本地方法栈,这里要稍微复杂一点。如果我们写一段程序不断的进行递归调用,而且没有退出条件,就会导致不断地进行压栈。类似这种情况,JVM 实际会抛出StackOverFlowError;当然,如果 JVM 试图去扩展栈空间的的时候失败,则会抛出OutOfMemoryError。 对于老版本的 Oracle JDK,因为永久代的大小是有限的,并且 JVM 对永久代垃圾回收(如,常量池回收、卸载不再需要的类型)非常不积极,所以当我们不断添加新类型的时候,永久代出现OutOfMemoryError 也非常多见,尤其是在运行时存在大量动态类型生成的场合;类似 Intern 字符串缓存占用太多空间,也会导致 OOM 问题。对应的异常信息,会标记出来和永久代相关:“java.lang.OutOfMemoryError: PermGenspace GC 算法 复制(Copying)算法,我前面讲到的新生代 GC,基本都是基于复制算法,将活着的对象复制到 to 区域,拷贝过程中将对象顺序放置,就可以避免内存碎片化。这么做的代价是,既然要进行复制,既要提前预留内存空间,有一定的浪费;另外,对于 G1 这种分拆成为大量 region 的 GC,复制而不是移动,意味着 GC 需要维护 region 之间对象引用关系,这个开销也不小,不管是内存占用或者时间开销。 标记 - 清除(Mark-Sweep)算法,首先进行标记工作,标识出所有要回收的对象,然后进行清除。这么做除了标记、清除过程效率有限,另外就是不可避免的出现碎片化问题,这就导致其不适合特别大的堆;否则,一旦出现 Full GC,暂停时间可能根本无法接受。 标记 - 整理(Mark-Compact),类似于标记 - 清除,但为避免内存碎片化,它会在清理过程中将对象移动,以确保移动后的对象占用连续的内存空间。 G1 垃圾回收器采用的是什么垃圾回收算法? 从 GC 算法的角度,G1 选择的是复合算法,可以简化理解为: 在新生代,G1 采用的仍然是并行的复制算法,所以同样会发生 Stop-The-World 的暂停。 在老年代,大部分情况下都是并发标记,而整理(Compact)则是和新生代 GC 时捎带进行,并且不是整体性的整理,而是增量进行的。 GC 调优思路 从性能的角度看,通常关注三个方面,内存占用(footprint)、延时(latency)和吞吐量(throughput),大多数情况下调优会侧重于其中一个或者两个方面的目标,很少有情况可以兼顾三个不同的角度。当然,除了上面通常的三个方面,也可能需要考虑其他 GC 相关的场景,例如,OOM 也可能与不合理的 GC 相关参数有关;或者,应用启动速度方面的需求,GC 也会是个考虑的方面。 基本的调优思路可以总结为: 理解应用需求和问题,确定调优目标。假设,我们开发了一个应用服务,但发现偶尔会出现性能抖动,出现较长的服务停顿。评估用户可接受的响应时间和业务量,将目标简化为,希望 GC 暂停尽量控制在 200ms 以内,并且保证一定标准的吞吐量。 掌握 JVM 和 GC 的状态,定位具体的问题,确定真的有 GC 调优的必要。具体有很多方法,比如,通过 jstat 等工具查看 GC 等相关状态,可以开启 GC 日志,或者是利用操作系统提供的诊断工具等。例如,通过追踪 GC 日志,就可以查找是不是 GC 在特定时间发生了长时间的暂停,进而导致了应用响应不及时。 选择的 GC 类型是否符合我们的应用特征,如果是,具体问题表现在哪里,是 Minor GC 过长,还是 Mixed GC 等出现异常停顿情况;如果不是,考虑切换到什么类型,如 CMS 和 G1 都是更侧重于低延迟的 GC 选项。 通过分析确定具体调整的参数或者软硬件配置。验证是否达到调优目标,如果达到目标,即可以考虑结束调优;否则,重复完成分析、调整、验证这 个过程。 如何提高JVM的性能? 新对象预留在年轻代 通过设置一个较大的年轻代预留新对象,设置合理的 Survivor 区并且提供 Survivor 区的使用率,可以将年轻对象保存在年轻代。 大对象进入年老代 使用参数-XX:PetenureSizeThreshold 设置大对象直接进入年老代的阈值 设置对象进入年老代的年龄 这个阈值的最大值可以通过参数-XX:MaxTenuringThreshold 来设置,默认值是 15 稳定的 Java 堆 获得一个稳定的堆大小的方法是使-Xms 和-Xmx 的大小一致,即最大堆和最小堆 (初始堆) 一样。 增大吞吐量提升系统性能 –Xmx380m –Xms3800m:设置 Java 堆的最大值和初始值。一般情况下,为了避免堆内存的频繁震荡,导致系统性能下降,我们的做法是设置最大堆等于最小堆。假设这里把最小堆减少为最大堆的一半,即 1900m,那么 JVM 会尽可能在 1900MB 堆空间中运行,如果这样,发生 GC 的可能性就会比较高; -Xss128k:减少线程栈的大小,这样可以使剩余的系统内存支持更多的线程; -Xmn2g:设置年轻代区域大小为 2GB; –XX:+UseParallelGC:年轻代使用并行垃圾回收收集器。这是一个关注吞吐量的收集器,可以尽可能地减少 GC 时间。 –XX:ParallelGC-Threads:设置用于垃圾回收的线程数,通常情况下,可以设置和 CPU 数量相等。但在 CPU 数量比较多的情况下,设置相对较小的数值也是合理的; –XX:+UseParallelOldGC:设置年老代使用并行回收收集器。 尝试使用大的内存分页 –XX:+LargePageSizeInBytes:设置大页的大小。 内存分页 (Paging) 是在使用 MMU 的基础上,提出的一种内存管理机制。它将虚拟地址和物理地址按固定大小(4K)分割成页 (page) 和页帧 (page frame),并保证页与页帧的大小相同。这种机制,从数据结构上,保证了访问内存的高效,并使 OS 能支持非连续性的内存分配。 使用非占有的垃圾回收器 为降低应用软件的垃圾回收时的停顿,首先考虑的是使用关注系统停顿的 CMS 回收器,其次,为了减少 Full GC 次数,应尽可能将对象预留在年轻代。 system.gc() 的作用是什么? gc()函数的作用只是提醒虚拟机:程序员希望进行一次垃圾回收。但是它不能保证垃圾回收一定会进行,而且具体什么时候进行是取决于具体的虚拟机的,不同的虚拟机有不同的对策。 Parallel GC、CMS GC、ZGC、Azul Pauseless GC最主要的不同是?背后的原理也请简单描述下? Parallel GC的Young区采用的是Mark-Copy算法,Old区采用的是Mark-Sweep-Compact来实现,Parallel执行,所以决定了Parallel GC在执行YGC、FGC时都会Stop-The-World,但完成GC的速度也会比较快。 CMS GC的Young区采用的也是Mark-Copy,Old区采用的是Concurrent Mark-Sweep,所以决定了CMS GC在对old区回收时造成的STW时间会更短,避免对应用产生太大的时延影响。 G1 GC采用了Garbage First算法,比较复杂,实现的好呢,理论上是会比CMS GC可以更高效,同时对应用的影响也很小。 ZGC、Azul Pauseless GC采用的算法很不一样,尤其是Pauseless GC,其中的很重要的一个技巧是通过增加Read Barrier来更好的识别对GC而言最关键的references变化的情况。 什么时候执行ygc,fullgc? 当young gen中的eden区分配满的时候触发young gc,当年老代内存不足时,将执行Major GC,也叫 Full GC。 gc()函数的作用只是提醒虚拟机:程序员希望进行一次垃圾回收。但是它不能保证垃圾回收一定会进行,而且具体什么时候进行是取决于具体的虚拟机的,不同的虚拟机有不同的对策。 强引用、软引用、弱引用、幻象引用有什么区别?具体使用场景是什么? 不同的引用类型,主要体现的是对象不同的可达性(reachable)状态和对垃圾收集的影响。 所谓强引用("Strong" Reference),就是我们最常见的普通对象引用,只要还有强引用指向一个对象,就能表明对象还“活着”,垃圾收集器不会碰这种对象。对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为 null,就是可以被垃圾收集的了,当然具体回收时机还是要看垃圾收集策略。 软引用(SoftReference),是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当 JVM 认为内存不足时,才会去试图回收软引用指向的对象。JVM 会确保在抛出OutOfMemoryError 之前,清理软引用指向的对象。软引用通常用来实现内存敏感的缓存,如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。 SoftReference 在“弱引用WeakReference”中属于最强的引用。SoftReference 所指向的对象,当没有强引用指向它时,会在内存中停留一段的时间,垃圾回收器会根据 JVM 内存的使用情况(内存的紧缺程度)以及 SoftReference 的 get() 方法的调用情况来决定是否对其进行回收。 对于幻象引用(PhantomReference ),有时候也翻译成虚引用,你不能通过它访问对象。幻象引用仅仅是提供了一种确保对象被 finalize 以后,做某些事情的机制,比如,通常用来做所谓的 Post-Mortem 清理机制,如 Java 平台自身 Cleaner 机制等,也有人利用幻象引用监控对象的创建和销毁。 Object counter = new Object(); ReferenceQueue refQueue = new ReferenceQueue<>(); PhantomReference<Object> p = new PhantomReference<>(counter, refQueue); counter = null; System.gc(); try { // Remove 是一个阻塞方法,可以指定 timeout,或者选择一直阻塞 Reference<Object> ref = refQueue.remove(1000L); if (ref != null) { // do something } } catch (InterruptedException e) { // Handle it } JVM类加载过程 一般来说,我们把 Java 的类加载过程分为三个主要步骤:加载、链接、初始化。 首先是加载阶段(Loading),它是 Java 将字节码数据从不同的数据源读取到 JVM 中,并映射为 JVM 认可的数据结构(Class 对象),这里的数据源可能是各种各样的形态,如 jar 文件、class 文件,甚至是网络数据源等;如果输入数据不是 ClassFile 的结构,则会抛出 ClassFormatError。加载阶段是用户参与的阶段,我们可以自定义类加载器,去实现自己的类加载过程。 第二阶段是链接(Linking),这是核心的步骤,简单说是把原始的类定义信息平滑地转化入 JVM 运行的过程中。这里可进一步细分为三个步骤: 验证(Verification),这是虚拟机安全的重要保障,JVM 需要核验字节信息是符合 Java 虚拟机规范的,否则就被认为是 VerifyError,这样就防止了恶意信息或者不合规的信息危害 JVM 的运行,验证阶段有可能触发更多 class 的加载。 准备(Preparation),创建类或接口中的静态变量,并初始化静态变量的初始值。但这里的“初始化”和下面的显式初始化阶段是有区别的,侧重点在于分配所需要的内存空间,不会去执行更进一步的 JVM 指令。 解析(Resolution),在这一步会将常量池中的符号引用(symbolic reference)替换为直接引用。 最后是初始化阶段(initialization),这一步真正去执行类初始化的代码逻辑,包括静态字段赋值的动作,以及执行类定义中的静态初始化块内的逻辑,编译器在编译阶段就会把这部分逻辑整理好,父类型的初始化逻辑优先于当前类型的逻辑。 什么是双亲委派模型? 简单说就是当类加载器(Class-Loader)试图加载某个类型的时候,除非父加载器找不到相应类型,否则尽量将这个任务代理给当前加载器的父加载器去做。使用委派模型的目的是避免重复加载 Java 类型。 类加载器的类型 启动类加载器(Bootstrap Class-Loader),加载 jre/lib 下面的 jar 文件,如 rt.jar。它是个超级公民,即使是在开启了 Security Manager 的时候,JDK 仍赋予了它加载的程序 AllPermission。 扩展类加载器(Extension or Ext Class-Loader),负责加载我们放到 jre/lib/ext/ 目录下面的 jar 包,这就是所谓的 extension 机制。该目录也可以通过设置 “java.ext.dirs”来覆盖。 应用类加载器(Application or App Class-Loader),就是加载我们最熟悉的 classpath 上下文类加载器 Java 提供了很多服务提供者接口(Service Provider Interface,SPI),允许第三方为这些接口提供实现。常见的 SPI 有 JDBC、JCE、JNDI、JAXP 和 JBI 等。这些 SPI 的接口由 Java 核心库来提供,而这些 SPI 的实现代码则是作为 Java 应用所依赖的 jar 包被包含进类路径(CLASSPATH)里。SPI接口中的代码经常需要加载具体的实现类。那么问题来了,SPI的接口是Java核心库的一部分,是由**启动类加载器(Bootstrap Classloader)来加载的;SPI的实现类是由系统类加载器(System ClassLoader)**来加载的。引导类加载器是无法找到 SPI 的实现类的,因为依照双亲委派模型,BootstrapClassloader无法委派AppClassLoader来加载类。而线程上下文类加载器破坏了“双亲委派模型”,可以在执行线程中抛弃双亲委派加载链模式,使程序可以逆向使用类加载器。 ServiceLoader 的加载代码: public static <S> ServiceLoader<S> load(Class<S> service) { ClassLoader cl = Thread.currentThread().getContextClassLoader(); return ServiceLoader.load(service, cl); } ContextClassLoader默认存放了AppClassLoader的引用,由于它是在运行时被放在了线程中,所以不管当前程序处于何处(BootstrapClassLoader或是ExtClassLoader等),在任何需要的时候都可以用Thread.currentThread().getContextClassLoader()取出应用程序类加载器来完成需要的操作。 自定义类加载器 自定义类加载器,常见的场景有: 实现类似进程内隔离,类加载器实际上用作不同的命名空间,以提供类似容器、模块化的效果。例如,两个模块依赖于某个类库的不同版本,如果分别被不同的容器加载,就可以互不干扰。这个方面的集大成者是Java EE和OSGI、JPMS等框架。 应用需要从不同的数据源获取类定义信息,例如网络数据源,而不是本地文件系统。 需要自己操纵字节码,动态修改或者生成类型 从本地路径 load class 的例子: public class CustomClassLoader extends ClassLoader { @Override public Class findClass(String name) throws ClassNotFoundException { byte[] b = loadClassFromFile(name); return defineClass(name, b, 0, b.length); } private byte[] loadClassFromFile(String fileName) { InputStream inputStream = getClass().getClassLoader().getResourceAsStream( fileName.replace('.', File.separatorChar) + ".class"); byte[] buffer; ByteArrayOutputStream byteStream = new ByteArrayOutputStream(); int nextValue = 0; try { while ( (nextValue = inputStream.read()) != -1 ) { byteStream.write(nextValue); } } catch (IOException e) { e.printStackTrace(); } buffer = byteStream.toByteArray(); return buffer; } } 动态代理的原理? 反射机制是 Java 语言提供的一种基础功能,赋予程序在运行时自省(introspect,官方用语)的能力。通过反射我们可以直接操作类或者对象,比如获取某个对象的类定义,获取类声明的属性和方法,调用方法或者构造对象,甚至可以运行时修改类定义。 动态代理是一种方便运行时动态构建代理、动态处理代理方法调用的机制,很多场景都是利用类似机制做到的,比如用来包装 RPC 调用、面向切面的编程(AOP)。 实现动态代理的方式很多,比如 JDK 自身提供的动态代理,就是主要利用了上面提到的反射机制。还有其他的实现方式,比如利用传说中更高性能的字节码操作机制,类似 ASM、cglib(基于 ASM)、Javassist 等。 如何使用JDK动态代理? public class MyDynamicProxy { public static void main (String[] args) { HelloImpl hello = new HelloImpl(); MyInvocationHandler handler = new MyInvocationHandler(hello); // 构造代码实例 Hello proxyHello = (Hello) Proxy.newProxyInstance(HelloImpl.class.getClassLoader(), HelloImpl.class.getInterfaces(), handler); // 调用代理方法 proxyHello.sayHello(); } } interface Hello { void sayHello(); } class HelloImpl implements Hello { @Override public void sayHello() { System.out.println("Hello World"); } } class MyInvocationHandler implements InvocationHandler { private Object target; public MyInvocationHandler(Object target) { this.target = target; } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { System.out.println("Invoking sayHello"); Object result = method.invoke(target, args); return result; } } 动态代理:JDK动态代理和CGLIB代理的区别? JDK动态代理只能对实现了接口的类生成代理,而不能针对类,CGLIB是针对类实现代理,主要是对指定的类生成一个子类,覆盖其中的方法(继承)。 JDK Proxy 的优势: 最小化依赖关系,减少依赖意味着简化开发和维护,JDK 本身的支持,可能比 cglib 更加可靠。 平滑进行 JDK 版本升级,而字节码类库通常需要进行更新以保证在新版 Java 上能够使用。 代码实现简单。 基于类似 cglib 框架的优势: 有的时候调用目标可能不便实现额外接口,从某种角度看,限定调用者实现接口是有些侵入性的实践,类似 cglib 动态代理就没有这种限制。 只操作我们关心的类,而不必为其他相关类增加工作量。 高性能。 Spring在选择用JDK还是CGLiB的依据是什么? (1)当Bean实现接口时,Spring就会用JDK的动态代理 (2)当Bean没有实现接口时,Spring使用CGlib是实现 (3)可以强制使用CGlib(在spring配置中加入<aop:aspectj-autoproxy proxy-target-class="true"/>) CGlib比JDK快? (1)使用CGLib实现动态代理,CGLib底层采用ASM字节码生成框架,使用字节码技术生成代理类,比使用Java反射效率要高。唯一需要注意的是,CGLib不能对声明为final的方法进行代理,因为CGLib原理是动态生成被代理类的子类。但是JDK也在升级,开始引入很多字节码技术来实现部分动态代理的功能,所以在某些测试下不一定是CGLib更快。 Java 中操作字节码的技术 ASM、Javassist、CGLib、Byte Budy。 更多关于Java的文章请访问:

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。