【机器学习PAI实践四】如何实现金融风控
(本文数据为虚构,仅供实验)
一、背景
本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。
本文的业务场景如下:
下图是已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事关系或者亲人关系等。已知“Enoch”是信用用户,”Evan”是欺诈用户,计算出其它人的信用指数。通过图算法,可以算出图中每个人是欺诈用户的概率,这个数据可以方便相关机构做风控。
二、数据集介绍
数据源:本文数据为自己生成,用于实验。
具体字段如下:
| 字段名 | 含义 | 类型 | 描述 |
|---|---|---|---|
| start_point | 边的起始节点 | string | 人 |
