偷税漏税行为检测:Keras库构建神经网络模型,scikit-learn库构建CART决策树模型
偷税漏税行为检测企业做假账偷税漏税的行为普遍存在,汽车行业通过“多开发票”、“做双份报表”、“减少支出”等方式进行偷漏税。本任务使用Keras库来构建神经网络模型,使用scikit-learn库构建CART决策树模型,并构建决策树模型预测企业是否漏税。 通过本任务,您将掌握以下内容: 1、构建LM神经网络模型。 2、构建CART决策树模型,并构建决策树模型。 3、学会分析模型的好坏。 4、对比LM神经网络的ROC曲线比CART决策树的ROC曲线的好坏。 背景和挖掘目标企业做假账偷税漏税的行为普遍存在,汽车行业通过“多开发票”、“做双份报表”、“减少支出”等方式进行偷漏税。随着企业偷漏税现在泛滥,也影响国家经济基础。通过数据挖掘能自动识别企业偷漏税行为,提高稽查效率减少经济损失。汽车销售行业在税收上存在少开发票金额、少记收入,上牌、按揭、保险不入账,不及时确认保修索赔款等情况,导致政府损失大量税收。汽车销售企业的部分经营指标数据能在一定程度上评估企业的偷漏税倾向。样本数据提供了汽车销售行业纳税人的各种属性和是否偷漏税标识,提取纳税人经营特征可以建立偷漏税行为识别模型。 分析方法和过程在建...