Kaggle word2vec NLP 教程 第二部分:词向量
原文:Bag of Words Meets Bags of Popcorn 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 第二部分:词向量 代码 第二部分的教程代码在这里。 分布式词向量简介 本教程的这一部分将重点介绍使用 Word2Vec 算法创建分布式单词向量。 (深度学习的概述,以及其他一些教程的链接,请参阅“什么是深度学习?”页面)。 第 2 部分和第 3 部分比第 1 部分假设你更熟悉Python。我们在双核 Macbook Pro 上开发了以下代码,但是,我们还没有在 Windows 上成功运行代码。如果你是 Windows 用户并且使其正常运行,请在论坛中留言如何进行操作!更多详细信息,请参阅“配置系统”页面。 Word2vec,由 Google 于 2013 年发表,是一种神经网络实现,可以学习单词的分布式表示。在此之前已经提出了用于学习单词表示的其他深度或循环神经网络架构,但是这些的主要问题是训练模型所需时长间。 Word2vec 相对于其他模型学习得快。 Word2Vec 不需要标签来创建有意义的表示。这很有用,因为现实世界中的大多数数据都是...





