分布式事务--消息发送一致性的异常流程处理
课程详情:https://www.roncoo.com/course/view/7ae3d7eddc4742f78b0548aa8bd9ccdb
最近生产环境的消息通知队列发生了大量的数据积压问题,从而影响到整个平台商户的交易无法正常进行,最后只能通过临时关闭交易量较大的商户来缓解消息队列积压的问题,经线上数据分析,我们的消息队列在面对交易突发洪峰的情况下无法快速的消费并处理队列中的数据,考虑到后续还会出现各种交易量突发状况,以下为针对消息队列(ActiveMQ)的优化过程。
分析:平台中每个交易的发生可能会产生一到多条的消息通知数据,这些通知数据会通过消息队列(ActiveMQ)来中转消费并处理,那么在交易量突发洪峰的情况下会产生大量的消息通知数据,如果消息队列(ActiveMQ)的消费能力被阻塞的话会严重影响到数据的吞吐量,从而积压大量数据无法被快速处理!
分析:经过分析消息队列的数据消费处理模块的代码,消息的消费处理是通过监听器SessionAwareMessageListener异步回调onMessage方法而接收消息的,但是在回调的方法onMessage上加了synchronized同步锁,问题就在这里,由于整个onMessage方法被锁,导致程序只能通过串行(一次只能消费一条数据)处理数据,而无法通过多线程并发处理数据,从而影响了整个队列的数据消费能力。
public synchronized void onMessage(Message message, Session session)
分析:首先多个消费者并发处理的数据是不同的,而且多个消费者线程并发回调onMessage方法的时候并未使用到共享的变量,全部在各自线程的方法栈中,所以理论上不会出现多线程并发产生的安全性问题。
分析:
(1)通过分析ActiveMQ的消费者消息接收处理的源代码发现,一条消息是否已经消费是通过ack确认机制来保证的,如果是通过异步回调的方式接收消息的话,在onMessage回调函数返回之后会立即进行ack确认提交,那么只要保证onMessage函数内部不抛出异常,及需要内部捕获异常,那么消息就不会被重复消息。
(2)因为我们的系统在接收到消息后会首先存入db中进行持久化,而且每条消息在存入数据库的时候都做了唯一性约束,那么即使有重复的消息也不会被正常处理。
启动多个线程分别往MQ消息队列中发送数据,共发送15000个消息,然后启动消费者模块消费消息,设定每个消息处理耗时为10ms,配置ActiveMQ的消费者数量为concurrency = 5-100
| 测试次数 | 是否并发处理 | 消息数量 | queuePrefetch |
consumers | 耗时 |
|---|---|---|---|---|---|
| 1 | 否 | 15000 | 1000 | 15 | 151s |
| 2 | 否 | 15000 | 1000 | 16 | 151s |
| 3 | 否 | 15000 | 1000 | 15 | 151s |
优化前通过测试数据发现,虽然配置了concurrency = 5-100 (消费者动态伸缩),但是只有15个消费者在忙碌,而且消息都是串行化执行的,15000条消息共需要151s的时间,效率非常差,ps:哈哈,不知道是哪位开发的大神加的同步锁!
注:queuePrefetch 为MQ的消费者一次从Queue中拉取的数量,默认为1000,consumers为处理消息的消费者数量
取消在监听器的回调方法onMessage上的synchronized同步锁
| 测试次数 | 是否并发处理 | 消息数量 | queuePrefetch |
consumers | 耗时 |
|---|---|---|---|---|---|
| 1 | 是 | 15000 | 1000 | 14 | 13s |
| 2 | 是 | 15000 | 1000 | 15 | 13s |
| 3 | 是 | 15000 | 1000 | 15 | 13s |
通过以上数据发现取消同步锁,15000条消息只需要13s就可以处理完,相比之前快了近12倍,虽然速度提升了不少,但是发现配置了5-100的消费者,确只有15个消费者在忙碌,其他消费者都没有消息可处理,及造成了数据倾斜,那么接下来就要通过优化queuePrefetch 参数了。
预获取消息数量是MQ中重要的调优参数之一,为了提高网络的传输效率,ActiveMQ默认给Consumer批量push 1000条消息,可以从ActiveMQ源码中的ActiveMQPrefetchPolicy类的DEFAULT_QUEUE_PREFETCH字段得知,考虑到我们的通知消息的消费处理中涉及到数据库的操作,以及综合网络传输效率,这里将queuePrefetch的值设置为100,具体需配置到ActiveMQ的连接地址后,如:
tcp://localhost:61616?jms.prefetchPolicy.queuePrefetch=100
| 测试次数 | 是否并发处理 | 消息数量 | queuePrefetch |
consumers | 耗时 |
|---|---|---|---|---|---|
| 1 | 是 | 15000 | 100 | 40 | 7s |
| 2 | 是 | 15000 | 100 | 47 | 5s |
| 3 | 是 | 15000 | 100 | 41 | 6s |
将ActiveMQ的queuePrefetch参数修改为100,那么发现有近一半的消费者在处理数据,最后15000条消息需要6s中就可以处理完成。
通过以上两步的优化后的测试结果可以得出,取消同步锁之后队列的消费能力提升了近11倍,在取消同步锁的基础上再优化ActiveMQ批处理参数后性能又提升了近1倍,综合以上两步的优化处理,队列整体的消费能力提高了30多倍。
阶段二的优化方案是在阶段一的基础上进行的优化处理
由于我们的消息通知业务属于幂等性操作,会按照设定的通知次数来反复通知处理,直到通知成功为止,我们系统现在的做法是将接收到MQ的消息暂存于延时队列(DelayQueue)中,然后通过多线程轮训取出,然后通过HTTP通知到其他模块处理,如果通知失败,则重新放入同一个延时队列等待下次执行,如上图:消息1通知失败后会重新放入延时队列。
注:单队列处理的不足
由于使用了单队列处理,使得可以一次通知成功的消息与通知多次失败的消息混合在了一起,这样在队列中失败通知的消息就会阻塞到后续可以正常通知的消息,最终导致消息整体的一个吞吐量下降
针对5.1单队列的不足,我们可以重新设计,将单队列设计为双队列处理,双队列的核心思想为如果队列1中的消息通知失败,则不再重新放入队列1,而是放入队列2去通知,这样可以起到消息数据分离的作用,及失败通知的数据不再会影响到后续可以成功通知的消息,从而提高队列消息通知的整体性能!
ActiveMQ是一个老牌的消息队列组件,吞吐量方面表现不是很理想,适合在业务量不大的场景中使用,现在有非常多比较成熟及高性能高吞吐的消息队列组件可供我们选择,如:RabbitMQ、RocketMQ、Kafka,后续可根据实际情况考虑替换掉ActiveMQ组件。
针对消息队列的数据积压问题,我们主要做了三个方面的优化处理,取消同步锁、ActiveMQ参数优化、本地双队列优化,通过这三个方面的优化基本解决了队列数据积压的问题。
微信关注我们
转载内容版权归作者及来源网站所有!
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。
为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。
Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。
Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。