并发编程实战这门课程讲的很用心
不足之处就是重量级锁、轻量级锁、偏向锁讲的不清晰。。估计作者也不是特别了解吧。。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
Java处理高并发高负载类网站的优化方法
一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(主-从)方式进行同步复制,将查询和操作和分别在不同的服务器上进行操作。我推荐的是M-M-Slaves方式,2个主Mysql,多个Slaves,需要注意的是,虽然有2个Master,但是同时只有1个是Active,我们可以在一定时候切换。之所以用2个M,是保证M不会又成为系统的SPOF。 Slaves可以进一步负载均衡,可以结合LVS,从而将select操作适当的平衡到不同的slaves上。以上架构可以抗衡到一定量的负载,但是随着用户进一步增加,你的用户表数据超过1千万,这时那个M变成了SPOF。你不能任意扩充Slaves,否则复制同步的开销将直线上升,怎么办?我的方法是表分区,从业务层面上进行分区。最简单的,以用户数据为例。根据一定的切分方式,比如id,切分到不同的数据库集群去。 全局数...
-
下一篇
Elasticsearch里面的segment合并
通过前面的文章,我们已经知道在elasticsearch中每个shard每隔1秒都会refresh一次,每次refresh都会生成一个新的segment,按照这个速度过不了多久segment的数量就会爆炸,所以存在太多的segment是一个大问题,因为每一个segment都会占用文件句柄,内存资源,cpu资源,更加重要的是每一个搜索请求都必须访问每一个segment,这就意味着存在的segment越多,搜索请求就会变的更慢。那么elaticsearch是如何解决这个问题呢? 实际上elasticsearch有一个后台进程专门负责segment的合并,它会把小segments合并成更大的segments,然后反复这样。在合并segments的时候标记删除的document不会被合并到新的更大的segment里面,所有的过程都不需要我们干涉,es会自动在索引和搜索的过程中完成,合并的segment可以是磁盘上已经commit过的索引,也可以在内存中还未commit的segment:(1)在索引时refresh进程每秒会创建一个新的segment并且打开它使得搜索可见(2)merge进程会在...
相关文章
文章评论
共有0条评论来说两句吧...