G7在实时计算Flink的探索与实践
G7业务快览# G7主要通过在货车上的传感器感知车辆的轨迹、油耗、点熄火、载重、温度等数据,将车辆、司机、车队、货主连接到一起,优化货物运输的时效、安全、成本等痛点问题。 整个数据是通过车载的传感器设备采集,比如公司的Smart盒子,CTBox盒子,油感设备,温度探头等,将车辆数据上报到后端平台,在后端平台计算和处理,最后展示到用户面前。 G7的业务场景是典型的IoT场景: 1.传感器数据 2.数据种类多 3.数据质量差 4.数据低延迟 5.数据量大 其中,数据质量差的原因是整个链条会非常的长,从传感器采集的车辆的数据,通过网络运营商将数据上报到后端服务器,再经过解析,mq,过滤,调用三方接口,业务处理,入库,整个过程非常的长,造成数据在传输过程中出现数据重复,数据缺失等。另外一点,IoT场景需要数据传输的延迟非常低,比如进出区域报警,当车辆进入到某个电子围栏中的时候需要触发报警,这个时候需要快速产生报警事件,通常不能超过30s,否则时间太长车辆已经通过了某个电子围栏区域再报警就没有价值了。再一个,数据量也是非常大的,现在每天产生轨迹点20亿+,每天产生数据量100亿+,对计算性能的要...