您现在的位置是:首页 > 文章详情

汤晓鸥为CNN搓了一颗大力丸

日期:2018-07-29点击:655

大把时间、大把GPU喂进去,训练好了神经网络。

接下来,你可能会迎来伤心一刻:

同学,测试数据和训练数据,色调、亮度不太一样。

同学,你还要去搞定一个新的数据集。

是重新搭一个模型呢,还是拿来新数据重新调参,在这个已经训练好的模型上搞迁移学习呢?

香港中文大学-商汤联合实验室的潘新钢、罗平、汤晓鸥和商汤的石建萍,给出了一个新选项。

他们设计了一种新的卷积架构,既能让CNN提升它在原本领域的能力,又能帮它更好地泛化到新领域。

这个新架构叫做IBN-Net。

它在伯克利主办的WAD 2018 Challenge中获得了Drivable Area(可行驶区域)赛道的冠军。相关的论文Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net发表在即将召开的计算机视觉顶

原文链接:https://yq.aliyun.com/articles/620379
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章