您现在的位置是:首页 > 文章详情

目标检测技术演化:从R-CNN到Faster R-CNN

日期:2018-07-25点击:641

目标检测旨在准确地找到给定图片中物体的位置,并将其正确分类。准确地来讲,目标检测需要确定目标是什么以及对其定位。

然而,想要解决这个问题并不容易。因为,目标的大小,其在空间中的方向,其姿态,以及其在图片中的位置都是变化的。

这里有一张图片,我们需要识别图片中的物体,并且用方框将该物体圈出来。

1

图像识别(分类)

  1. 输入:图像
  2. 输出:目标类型
  3. 评价指标:精确度

定位:

  1. 输入:图像
  2. 输出:方框在图片中的位置(x,y,w,h)
  3. 评价指标:检测评价函数(IOU)

如今大火的卷积神经网络帮助我们很好地进行图像识别。但是,我们仍需要一些额外的功能来进行精确定位,深度学习在这里发挥了很好的作用。

在本文中,我们将从目标定位的角度入手探讨目标检测技术的发展。我们将按着如下的演化顺序讲述:R-CNN->SPP Net->Fast R-CNN-> Faster

原文链接:https://yq.aliyun.com/articles/619803
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章