深度学习综述
本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。 深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了显著的改善,包括最先进的语音识别、视觉对象识别、对象检测和许多其它领域,例如药物发现和基因组学等。深度学习能够发现大数据中的复杂结构。它是利用BP算法来完成这个发现过程的。BP算法能够指导机器如何从前一层获取误差而改变本层的内部参数,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和演讲方面表现出了闪亮的一面。 机器学习技术在现代社会的各个方面表现出了强大的功能:从Web搜索到社会网络内容过滤,再到电子商务网站上的商品推荐都有涉足。并且它越来越多地出现在消费品中,比如相机和智能手机。 机器学习系统被用来识别图片中的目标,将语音转换成文本,匹配新闻元素,根据用户兴趣提供职位或产品,选择相关的搜索结果。逐渐地,这些应用使用一种叫深度学习的技术。传统的机器学习技术在处理未...