深度学习应用系统分析:应用组合和形态矩阵找到正确路径
对深度学习研究和应用的兴趣从未这么热过。深度学习最迷人的地方是,神经网络似乎能够解决以前只能用定制方法解决的各种问题。 【导读】本文收录了arXiv.org上关于深度学习的一些最新的研究论文,列出了这些文章的内容,包括“深度学习八大灵感应用”、“深度学习用例”、“科学与工程中的深度学习应用”、“深度学习应用程序的下一次浪潮”等。针对这些文章缺乏系统方法的问题,提出了具体的组合矩阵、形态矩阵解决方案,并给出了预测示例。 隐藏的潜力 对深度学习研究和应用的兴趣从未这么热过。几乎每天都可以在arXiv.org找到无数的新研究论文。这些论文为我们描述了新的方法,人工神经网络可以靠这些方法应用于我们日常生活的各个领域。深度学习最迷人的地方是,神经网络似乎能够解决以前只能用定制方法解决的各种问题。 此外,每天都会出现新的文章或博客,告诉我们更多奇特的应用深度学习的方式。这些文章、博客甚至书籍的问题是,它们不对神经网络应用程序进行系统性的处理。至少到目前为止,我还没有看到有人这么做。如果你知道有人这么做过,请告诉我。 最先进的方法 在搜索这篇文章的材料时,我发现了一些总结深度学习应用程序的文章。下面...