从原理到实战 英伟达教你用PyTorch搭建RNN(上)
从 Siri 到谷歌翻译,深度神经网络大步推动了机器对自然语言的理解。
迄今为止,大多数模型把语言看作是字词的平面序列(flat sequence),使用时间递归神经网络(recurrent neural network)来处理。但语言学家认为,这并不是看待语言的最佳方式,应把其理解为由短语组成的的分层树状结构( hierarchical tree of phrases)。由于对该类结构的支持,大量深度学习研究投入到结构递归神经网络(recursive neural network)之中。在业内,这些模型有非常难以执行、运行起来效率低下的名声。
但对于今年 Facebook 开源的新深度学习框架 PyTorch ,业内人士人认为它的一大贡献是:搭建结构递归神经网络以及其它复杂自然语言处理模型,变得更简便。
结构递归神经网络,是展示 Py