首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/183260

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

干货 | 算法工程师入门第三期——黄李超讲物体检测

雷锋网(公众号:雷锋网)按:地平线大牛讲堂算法工程师入门第三期重磅来袭!本期地平线深度学习算法工程师黄李超将为大家带来物体检测相关内容的分享,全文约8000字,建议阅读时间20分钟,欢迎转发或收藏。 前期传送门: 干货 | 算法工程师入门第一期——罗恒讲深度学习 干货 | 算法工程师入门第二期——穆黎森讲增强学习(一) 干货 | 算法工程师入门第二期——穆黎森讲增强学习(二) 本次分享主要针对一些对深度学习和物体检测感兴趣的同学。内容主要包括: 第一,什么是物体检测,如何去评价一个物体里系统的好坏。 第二,物体检测整个的框架是怎么样的?它一般包含了图像的分类和物体检测的定位。 第三,介绍物体检测的历史发展,从传统的人工设计的一些图像特征加上分类器到现在的深度学习。 ▼ What’s Computer Vision 介绍物体检测之前,我们首先要知道什么是

Convolutional Neural Networks for Sentence Classification

本篇将分享一个有监督学习句子表示的方法,文章是Convolutional Neural Networks for Sentence Classification,作者是Harvard NLP组的Yoon Kim,并且开源了代码sent-conv-torch。 卷积神经网络(CNN)在计算机视觉中应用广泛,其捕捉局部feature的能力非常强,为分析和利用图像数据的研究者提供了极大额帮助。本文作者将CNN引用到了NLP的文本分类任务中。 本文模型架构图: 熟悉CNN结构的童鞋们看这个图就会非常眼熟,单通道图像可以表示为一个矩阵,输入到CNN中,经过多组filter层和pooling层,得到图像的局部特征,然后进行相关任务。本文用拼接词向量的方法,将一个句子表示成为一个矩阵,这里矩阵的每一行表示一个word,后面的步骤仅采用一组filter、pooling层来得到句子的特征向量,然后进行分类。 这里,模型根据词向量的不同分为四种: CNN-rand,所有的词向量都随机初始化,并且作为模型参数进行训练。 CNN-static,即用word2vec预训练好的向量(Google News),在训...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册