首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/80901

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

电脑识别图像的极限在何处?

电脑一直都很擅长视觉识别。有时它们识别一系列图像中某个个体的能力能够与人类相媲美。但相似的结果是否说明了电脑能够模拟人类的视觉系统呢?回答这个问题或许可能会发现电脑系统比不上人类的地方。 《美国科学院院刊》发表了一篇论文提到了电脑和人类视觉系统的不同。 最大的差别可以总结为电脑没有人脑灵活,这同样也是语言识别系统所面临的问题:人类可以通过支离破碎的单词推测出一句话或者一段话的意思而电脑不能。同样在图像识别方面:人类可以可以破碎的线索拼凑出模糊的图像,而电脑却不行。 论文的作者使用一组模糊、复杂的图像来确定计算机视觉模块与人类大脑的差异。他们使用的图像被称为“最小识别结构”(MIRCs)都是太小或者分辨率较低的图像再缩小一点人们都无法识别出来。 他们将这一系大小逐渐减小分辨率逐渐降低的图片呈现给Amazon Mechanical Turk上

利用机器学习技术进行图像识别

图像识别技术可以用来解决人脸识别或字符识别等多种问题。 在本文中,我将对算法进行实际编码来演示识别手写字,特别是手写的数字。我将会使用Python以及Python的许多模块,比如numpy、PIL等。 1 #从PIL库中导入Image 2 from PIL import Image 3 #导入numpy 4 import numpy as np 5 #从文件中载入图像 6 i = Image.open('images/dot.png') 7 #将图像转换成矩阵形式 8 iar = np.asarray(i) 9 #打印矩阵 10 print (iar) 代码中提到的图像“dot.png”基本如下: 下面给你看看图像的矩阵形式,这里只是矩阵的部分截图。 你会注意到一个由8个矩阵块组成的集合。每个矩阵块表示一个“水平行的像素”,如果仔细观察,你会发现图像有8个像

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。