大数据分析的下一代架构--IOTA架构设计实践
IOTA架构提出背景 大数据3.0时代以前,Lambda数据架构成为大数据公司必备的架构,它解决了大数据离线处理和实时数据处理的需求。典型的Lambda架构如下: Lambda架构的核心思想是:数据从底层的数据源开始,经过各样的格式进入大数据平台,然后分成两条线进行计算。一条线是进入流式计算平台,去计算实时的一些指标;另一条线进入批量数据处理离线计算平台,去计算T+1的相关业务指标,这些指标需要隔日才能看见。Lambda优点是稳定、实时和离线计算高峰错开,但是它有一些致命缺点,其缺点主要有:● 实时与批量计算结果不一致引起的数据口径问题:因为批量和实时计算走的是两个计算框架和计算程序,算出的结果往往不同,经常看到一个数字当天看是一个数据,第二天看昨天的数据反而发生了变化。● 批量计算在计算窗口内无法完成:在IOT时代,数据量级越来越大,经常发现夜间只有4、5个小时的时间窗口,已经无法完成白天20多个小时累计的数据,保证早上上班前准时出数据已成为每个大数据团队头疼的问题。● 数据源变化都要重新开发,开发周期长:每次数据源的格式变化,业务的逻辑变化都需要针对ETL和Streaming做开发...
