Hadoop DistributedCache详解(转载)
转自:http://dongxicheng.org/mapreduce-nextgen/hadoop-distributedcache-details/
转自:http://blog.sina.com.cn/s/blog_7581a4c30102veem.html
map阶段
1. 使用job.setInputFormatClass(TextInputFormat)做为输入格式。注意输出应该符合自定义Map中定义的输出。
2. 进入Mapper的map()方法,生成一个List。
3. 在map阶段的最后,会先调用job.setPartitionerClass()对这个List进行分区,每个分区映射到一个reducer。
4. 每个分区内又调用job.setSortComparatorClass()设置的key比较函数类排序(如果没有通过job.setSortComparatorClass()设置key比较函数类,则使用key的实现的compareTo方法)。可以看到,这是一个二次排序。
5. 如果设置了Combiner(job.setCombinerClass)对output进行一次合并,从而减少对reduce的输出流量和预处理reduce的input数据。但不一定会执行,对于Combiner执行时机参考Reference[4]。
【说明】以上步骤省略了collect阶段、cache阶段等细节,更详细步骤参考Reference[3]
reduce阶段
1. shuffle阶段
reducer开始fetch所有映射到这个reducer的map输出。
2.1 sort阶段
再次调用job.setSortComparatorClass()设置的key比较函数类对所有数据对排序(因为一个reducer接受多个mappers,需要重新排序)。
2.2 secondary sort阶段
然后开始构造一个key对应的value迭代器。这时就要用到分组,使用jobjob.setGroupingComparatorClass()设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。
3.reduce阶段
最后就是进入Reducer的reduce()方法,reduce()方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。
【注意】reducers的输出是无序的。
微信关注我们
转载内容版权归作者及来源网站所有!
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。
为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。
Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。
Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。