首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/531155

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Spark RDD概念学习系列之RDD的checkpoint(九)

RDD的检查点 首先,要清楚。为什么spark要引入检查点机制?引入RDD的检查点?   答:如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制。 RDD的缓存能够在第一次计算完成后,将计算结果保存到内存、本地文件系统或者Tachyon(分布式内存文件系统)中。通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度。但是,如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点(checkpoint)机制。 RDD的缓存和RDD的checkpoint的区别 RDD的缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存、本地文件系统和Tachyon)写入不同的介质。 而RDD的检查点不同,它是在计算完成后,重新建立一个Job来计算。 为了避免重复计算,推荐先...

Spark RDD概念学习系列之RDD是什么?(四)

RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的。详细见 Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类,具体由各子类实现,如MappedRDD、 ShuffledRDD等子类。 Spark将常用的大数据操作都转化成为RDD的子类。 官方对RDD的解释是:弹性分布式数据集,全称是Resilient Distributed Datasets。RDD是只读的、分区记录的集合。RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建。这些确定性操作称为转换,如map、filter、groupBy、join。 RDD不需物化,RDD含有如何从其他RDD衍生(即计算)出本RDD的相关信息(即Lineage),因此在RDD部分分区数据丢失的时候可以从物理存储的数据计算出相应的RDD分区。 这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。 所谓弹性,是指在内存不够时可以与磁盘进行交换。进一步见 细谈RDD的弹性 这设计了RDD的另一个特性:内存计算,就是...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。