[雪峰磁针石博客]数据分析工具pandas快速入门教程4-数据汇聚
我们需要的所有信息可能记录在单独的文件和数据帧中。例如,可能有一个公司信息单独表和股票价格表,数据被分成独立的表格以减少冗余信息。
连接
- 添加行
 
4-1.py
import pandas as pd
df1 = pd.read_csv('data/concat_1.csv')
df2 = pd.read_csv('data/concat_2.csv')
df3 = pd.read_csv('data/concat_3.csv')
print(df1)
print(df2)
print(df3)
row_concat = pd.concat([df1, df2, df3])
print(row_concat)
print(row_concat.iloc[3, ])
new_row_series = pd.Series(['n1', 'n2', 'n3', 'n4'])
print(pd.concat([df1, new_row_series]))
new_row_df = pd.DataFrame([['n1', 'n2', 'n3', 'n4']],
                          columns=['A', 'B', 'C', 'D'])
print(new_row_df)
print(pd.concat([df1, new_row_df]))
print(df1.append(df2))
print(df1.append(new_row_df))
data_dict = {'A': 'n1', 'B': 'n2', 'C': 'n3', 'D': 'n4'}
print(df1.append(data_dict, ignore_index=True))
row_concat_i = pd.concat([df1, df2, df3], ignore_index=True)
print(row_concat_i)
 
执行结果
$ python3 4-1.py 
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
    A   B   C   D
0  a4  b4  c4  d4
1  a5  b5  c5  d5
2  a6  b6  c6  d6
3  a7  b7  c7  d7
     A    B    C    D
0   a8   b8   c8   d8
1   a9   b9   c9   d9
2  a10  b10  c10  d10
3  a11  b11  c11  d11
     A    B    C    D
0   a0   b0   c0   d0
1   a1   b1   c1   d1
2   a2   b2   c2   d2
3   a3   b3   c3   d3
0   a4   b4   c4   d4
1   a5   b5   c5   d5
2   a6   b6   c6   d6
3   a7   b7   c7   d7
0   a8   b8   c8   d8
1   a9   b9   c9   d9
2  a10  b10  c10  d10
3  a11  b11  c11  d11
A    a3
B    b3
C    c3
D    d3
Name: 3, dtype: object
     A    B    C    D    0
0   a0   b0   c0   d0  NaN
1   a1   b1   c1   d1  NaN
2   a2   b2   c2   d2  NaN
3   a3   b3   c3   d3  NaN
0  NaN  NaN  NaN  NaN   n1
1  NaN  NaN  NaN  NaN   n2
2  NaN  NaN  NaN  NaN   n3
3  NaN  NaN  NaN  NaN   n4
    A   B   C   D
0  n1  n2  n3  n4
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
0  n1  n2  n3  n4
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
0  a4  b4  c4  d4
1  a5  b5  c5  d5
2  a6  b6  c6  d6
3  a7  b7  c7  d7
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
0  n1  n2  n3  n4
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
4  n1  n2  n3  n4
      A    B    C    D
0    a0   b0   c0   d0
1    a1   b1   c1   d1
2    a2   b2   c2   d2
3    a3   b3   c3   d3
4    a4   b4   c4   d4
5    a5   b5   c5   d5
6    a6   b6   c6   d6
7    a7   b7   c7   d7
8    a8   b8   c8   d8
9    a9   b9   c9   d9
10  a10  b10  c10  d10
11  a11  b11  c11  d11
 
- 添加列
 
4-2.py
In [1]: from numpy import NaN, NAN, nan
In [2]: print(NaN == True, NaN == False, NaN == 0, NaN == '', sep='|')
False|False|False|False
In [3]: print(NaN == NaN, NaN == nan, NaN == NAN, nan == NAN, sep='|')
False|False|False|False
In [4]: import pandas as pd
In [5]: print(pd.isnull(NaN), pd.isnull(nan), pd.isnull(NAN), sep='|')
True|True|True
In [6]: print(pd.notnull(NaN), pd.notnull(99), pd.notnull("https://china-testing.github.io"), sep='|')
False|True|True
 
执行结果
$ python3 4-2.py 
    A   B   C   D   A   B   C   D    A    B    C    D
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11
    A   A    A
0  a0  a4   a8
1  a1  a5   a9
2  a2  a6  a10
3  a3  a7  a11
    A   B   C   D   A   B   C   D    A    B    C    D new_col_list
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8           n1
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9           n2
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10           n3
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11           n4
    A   B   C   D   A   B   C   D    A    B    C    D new_col_list  \
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8           n1   
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9           n2   
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10           n3   
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11           n4   
  new_col_series  
0             n1  
1             n2  
2             n3  
3             n4  
   0   1   2   3   4   5   6   7    8    9    10   11
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11
 
- 合并不同区间
 
4-3.py
import pandas as pd
df1 = pd.read_csv('data/concat_1.csv')
df2 = pd.read_csv('data/concat_2.csv')
df3 = pd.read_csv('data/concat_3.csv')
df1.columns = ['A', 'B', 'C', 'D']
df2.columns = ['E', 'F', 'G', 'H']
df3.columns = ['A', 'C', 'F', 'H']
print(df1)
print(df2)
print(df3)
row_concat = pd.concat([df1, df2, df3])
print(row_concat)
print(pd.concat([df1, df2, df3], join='inner'))
print(pd.concat([df1,df3], ignore_index=False, join='inner'))
df1.index = [0, 1, 2, 3]
df2.index = [4, 5, 6, 7]
df3.index = [0, 2, 5, 7]
print(df1)
print(df2)
print(df3)
col_concat = pd.concat([df1, df2, df3], axis=1)
print(col_concat)
print(pd.concat([df1, df3], axis=1, join='inner'))
 
执行结果
$ python3 4-3.py 
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
    E   F   G   H
0  a4  b4  c4  d4
1  a5  b5  c5  d5
2  a6  b6  c6  d6
3  a7  b7  c7  d7
     A    C    F    H
0   a8   b8   c8   d8
1   a9   b9   c9   d9
2  a10  b10  c10  d10
3  a11  b11  c11  d11
     A    B    C    D    E    F    G    H
0   a0   b0   c0   d0  NaN  NaN  NaN  NaN
1   a1   b1   c1   d1  NaN  NaN  NaN  NaN
2   a2   b2   c2   d2  NaN  NaN  NaN  NaN
3   a3   b3   c3   d3  NaN  NaN  NaN  NaN
0  NaN  NaN  NaN  NaN   a4   b4   c4   d4
1  NaN  NaN  NaN  NaN   a5   b5   c5   d5
2  NaN  NaN  NaN  NaN   a6   b6   c6   d6
3  NaN  NaN  NaN  NaN   a7   b7   c7   d7
0   a8  NaN   b8  NaN  NaN   c8  NaN   d8
1   a9  NaN   b9  NaN  NaN   c9  NaN   d9
2  a10  NaN  b10  NaN  NaN  c10  NaN  d10
3  a11  NaN  b11  NaN  NaN  c11  NaN  d11
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
     A    C
0   a0   c0
1   a1   c1
2   a2   c2
3   a3   c3
0   a8   b8
1   a9   b9
2  a10  b10
3  a11  b11
    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3
    E   F   G   H
4  a4  b4  c4  d4
5  a5  b5  c5  d5
6  a6  b6  c6  d6
7  a7  b7  c7  d7
     A    C    F    H
0   a8   b8   c8   d8
2   a9   b9   c9   d9
5  a10  b10  c10  d10
7  a11  b11  c11  d11
     A    B    C    D    E    F    G    H    A    C    F    H
0   a0   b0   c0   d0  NaN  NaN  NaN  NaN   a8   b8   c8   d8
1   a1   b1   c1   d1  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
2   a2   b2   c2   d2  NaN  NaN  NaN  NaN   a9   b9   c9   d9
3   a3   b3   c3   d3  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN   a4   b4   c4   d4  NaN  NaN  NaN  NaN
5  NaN  NaN  NaN  NaN   a5   b5   c5   d5  a10  b10  c10  d10
6  NaN  NaN  NaN  NaN   a6   b6   c6   d6  NaN  NaN  NaN  NaN
7  NaN  NaN  NaN  NaN   a7   b7   c7   d7  a11  b11  c11  d11
    A   B   C   D   A   C   F   H
0  a0  b0  c0  d0  a8  b8  c8  d8
2  a2  b2  c2  d2  a9  b9  c9  d9
 
合并多个数据集
4-4.py
import pandas as pd
person = pd.read_csv('data/survey_person.csv')
site = pd.read_csv('data/survey_site.csv')
survey = pd.read_csv('data/survey_survey.csv')
visited = pd.read_csv('data/survey_visited.csv')
print(person)
print(site)
print(survey)
print(visited)
visited_subset = visited.iloc[[0, 2, 6], ]
o2o_merge = site.merge(visited_subset, left_on='name', right_on='site')
print(o2o_merge)
m2o_merge = site.merge(visited, left_on='name', right_on='site')
print(m2o_merge)
ps = person.merge(survey, left_on='ident', right_on='person')
vs = visited.merge(survey, left_on='ident', right_on='taken')
print(ps)
print(vs)
 
执行结果
$ python3 4-4.py 
      ident   personal    family
0      dyer    William      Dyer
1        pb      Frank   Pabodie
2      lake   Anderson      Lake
3       roe  Valentina   Roerich
4  danforth      Frank  Danforth
    name    lat    long
0   DR-1 -49.85 -128.57
1   DR-3 -47.15 -126.72
2  MSK-4 -48.87 -123.40
    taken person quant  reading
0     619   dyer   rad     9.82
1     619   dyer   sal     0.13
2     622   dyer   rad     7.80
3     622   dyer   sal     0.09
4     734     pb   rad     8.41
5     734   lake   sal     0.05
6     734     pb  temp   -21.50
7     735     pb   rad     7.22
8     735    NaN   sal     0.06
9     735    NaN  temp   -26.00
10    751     pb   rad     4.35
11    751     pb  temp   -18.50
12    751   lake   sal     0.10
13    752   lake   rad     2.19
14    752   lake   sal     0.09
15    752   lake  temp   -16.00
16    752    roe   sal    41.60
17    837   lake   rad     1.46
18    837   lake   sal     0.21
19    837    roe   sal    22.50
20    844    roe   rad    11.25
   ident   site       dated
0    619   DR-1  1927-02-08
1    622   DR-1  1927-02-10
2    734   DR-3  1939-01-07
3    735   DR-3  1930-01-12
4    751   DR-3  1930-02-26
5    752   DR-3         NaN
6    837  MSK-4  1932-01-14
7    844   DR-1  1932-03-22
    name    lat    long  ident   site       dated
0   DR-1 -49.85 -128.57    619   DR-1  1927-02-08
1   DR-3 -47.15 -126.72    734   DR-3  1939-01-07
2  MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14
    name    lat    long  ident   site       dated
0   DR-1 -49.85 -128.57    619   DR-1  1927-02-08
1   DR-1 -49.85 -128.57    622   DR-1  1927-02-10
2   DR-1 -49.85 -128.57    844   DR-1  1932-03-22
3   DR-3 -47.15 -126.72    734   DR-3  1939-01-07
4   DR-3 -47.15 -126.72    735   DR-3  1930-01-12
5   DR-3 -47.15 -126.72    751   DR-3  1930-02-26
6   DR-3 -47.15 -126.72    752   DR-3         NaN
7  MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14
   ident   personal   family  taken person quant  reading
0   dyer    William     Dyer    619   dyer   rad     9.82
1   dyer    William     Dyer    619   dyer   sal     0.13
2   dyer    William     Dyer    622   dyer   rad     7.80
3   dyer    William     Dyer    622   dyer   sal     0.09
4     pb      Frank  Pabodie    734     pb   rad     8.41
5     pb      Frank  Pabodie    734     pb  temp   -21.50
6     pb      Frank  Pabodie    735     pb   rad     7.22
7     pb      Frank  Pabodie    751     pb   rad     4.35
8     pb      Frank  Pabodie    751     pb  temp   -18.50
9   lake   Anderson     Lake    734   lake   sal     0.05
10  lake   Anderson     Lake    751   lake   sal     0.10
11  lake   Anderson     Lake    752   lake   rad     2.19
12  lake   Anderson     Lake    752   lake   sal     0.09
13  lake   Anderson     Lake    752   lake  temp   -16.00
14  lake   Anderson     Lake    837   lake   rad     1.46
15  lake   Anderson     Lake    837   lake   sal     0.21
16   roe  Valentina  Roerich    752    roe   sal    41.60
17   roe  Valentina  Roerich    837    roe   sal    22.50
18   roe  Valentina  Roerich    844    roe   rad    11.25
    ident   site       dated  taken person quant  reading
0     619   DR-1  1927-02-08    619   dyer   rad     9.82
1     619   DR-1  1927-02-08    619   dyer   sal     0.13
2     622   DR-1  1927-02-10    622   dyer   rad     7.80
3     622   DR-1  1927-02-10    622   dyer   sal     0.09
4     734   DR-3  1939-01-07    734     pb   rad     8.41
5     734   DR-3  1939-01-07    734   lake   sal     0.05
6     734   DR-3  1939-01-07    734     pb  temp   -21.50
7     735   DR-3  1930-01-12    735     pb   rad     7.22
8     735   DR-3  1930-01-12    735    NaN   sal     0.06
9     735   DR-3  1930-01-12    735    NaN  temp   -26.00
10    751   DR-3  1930-02-26    751     pb   rad     4.35
11    751   DR-3  1930-02-26    751     pb  temp   -18.50
12    751   DR-3  1930-02-26    751   lake   sal     0.10
13    752   DR-3         NaN    752   lake   rad     2.19
14    752   DR-3         NaN    752   lake   sal     0.09
15    752   DR-3         NaN    752   lake  temp   -16.00
16    752   DR-3         NaN    752    roe   sal    41.60
17    837  MSK-4  1932-01-14    837   lake   rad     1.46
18    837  MSK-4  1932-01-14    837   lake   sal     0.21
19    837  MSK-4  1932-01-14    837    roe   sal    22.50
20    844   DR-1  1932-03-22    844    roe   rad    11.25
 
参考资料
- 技术支持qq群144081101 591302926 567351477 钉钉免费群21745728
 - 本文最新版本地址
 - 本文涉及的python测试开发库 谢谢点赞!
 - 本文相关海量书籍下载
 - 源码下载
 - 本文英文版书籍下载
 
关注公众号
					低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 
							
								
								    上一篇
								    
								
								Python测算女朋友还完花呗多久后吃土
七夕前夕,我的暗恋对象邀我共进晚餐,这把我激动的~!!!万年单身的我终于可以不再寂寞了! 去了才知道,原来她被闺蜜们放了鸽子,奈何近期有喜事,需要找人一起喝酒,所以才有了我的出现。 当然我还是珍惜这难得的机会,到底是什么事如此迫不及待呢?主要有三件: 暗恋对象最近学习了python数据分析,换了一份月薪1W的工作,成为了一名优秀的数据分析师,并且公司每月会根据绩效给予1500元左右的奖金; 暗恋对象在世界杯期间,参与了体育竞猜游戏,幸运地选中了法国队,还清了蚂蚁花呗巨额欠款; 暗恋对象说,有钱了,可以随心所欲地浪,不用再担心还不起花呗吃土了,所以今天她请客。 对于前两件事,无疑是难得的。但第三件,为了防止她过度挥霍导致债台高筑,我决定用Python进行一次模拟测算,默默提醒她,体现我的贴心。 利用刚学会的蒙特卡洛原理,我决定建立收入支出模型进行
 - 
							
								
								    下一篇
								    
								
								[雪峰磁针石博客]数据分析工具pandas快速入门教程5-处理缺失数据
第5章 缺失数据 介绍 很少没有任何缺失值的数据集。 有许多缺失数据的表示。 在数据库中是NULL值,一些编程语言使用NA。缺失值可以是空字符串:''或者甚至是数值88或99等。Pandas显示缺失值为NaN。 本章将涵盖: 什么是缺失值 如何创建缺失值 如何重新编码并使用缺失值进行计算 什么是缺失值 可以从numpy中获得NaN值,在Python中看到缺失值使用几种方式显示:NaN,NAN或nan,他们都是相等的。 NaN不等于0或空字符串''。 In [1]: from numpy import NaN, NAN, nan In [2]: print(NaN == True, NaN == False, NaN == 0, NaN == '', sep='|') False|False|False|False In [3]: print(NaN == NaN, NaN == nan, NaN == NAN, nan == NAN, sep='|') False|False|False|False In [4]: import pandas as pd In [5]: print(p...
 
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS6,CentOS7官方镜像安装Oracle11G
 - SpringBoot2编写第一个Controller,响应你的http请求并返回结果
 - CentOS7,8上快速安装Gitea,搭建Git服务器
 - Eclipse初始化配置,告别卡顿、闪退、编译时间过长
 - SpringBoot2整合Thymeleaf,官方推荐html解决方案
 - SpringBoot2全家桶,快速入门学习开发网站教程
 - MySQL表碎片整理
 - CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
 - CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
 - Docker快速安装Oracle11G,搭建oracle11g学习环境
 

			
				
				
				
				
				
				
				
微信收款码
支付宝收款码