教你用Python解决非平衡数据问题(附代码)
好久没有更新自己写的文章了,相信很多读者都会比较失望,甚至取关了吧,在此向各位网友道个歉。文章未及时更新的主要原因是目前在写Python和R语言相关的书籍,激动的是基于Python的数据分析与挖掘的书已经编写完毕,后期还继续书写R语言相关的内容。希望得到网友的理解,为晚来的新文章再次表示抱歉。
本次分享的主题是关于数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换。
SMOTE算法的介绍
在实际应用中,读者可能会碰到一种比较头疼的问题,那就是分类问题中类别型的因变量可能存在严重的偏倚,即类别之间的比例严重失调。如欺诈问题中,欺诈类观测在样本集中毕竟占少数;客户流失问题中,非忠实的客户往往也是占很少一部分;在某营销活动的响应问题中,真正参与活动的客户也同样只是少部分