Spark jdbc postgresql数据库连接和写入操作源码解读

概述:Spark postgresql jdbc 数据库连接和写入操作源码解读,详细记录了SparkSQL对数据库的操作,通过java程序,在本地开发和运行。整体为,Spark建立数据库连接,读取数据,将DataFrame数据写入另一个数据库表中。附带完整项目源码(完整项目源码github)。

这里写图片描述

1.首先在postgreSQL中创建一张测试表,并插入数据。(完整项目源码Github)

1.1. 在postgreSQL中的postgres用户下,创建 products

CREATE TABLE products (
    product_no integer,
    name text,
    price numeric
);

1.2. 在 products 插入数据

INSERT INTO products (product_no, name, price) VALUES
    (1, 'Cheese', 9.99),
    (2, 'Bread', 1.99),
    (3, 'Milk', 2.99);

查看数据库写入结果。

这里写图片描述

2.编写SPARK程序。(完整项目源码Github

2.1.读取Postgresql某一张表的数据为DataFrame(完整项目源码Github

SparkPostgresqlJdbc.java
Properties connectionProperties = new Properties();


//增加数据库的用户名(user)密码(password),指定postgresql驱动(driver)
connectionProperties.put("user","postgres");
connectionProperties.put("password","123456");
connectionProperties.put("driver","org.postgresql.Driver");

//SparkJdbc读取Postgresql的products表内容
Dataset<Row> jdbcDF = spark.read()
        .jdbc("jdbc:postgresql://localhost:5432/postgres","products",connectionProperties).select("name","price");

//显示jdbcDF数据内容
jdbcDF.show();

2.2.写入Postgresql某张表中

//将jdbcDF数据新建并写入newproducts,append模式是连接模式,默认的是"error"模式。
jdbcDF.write().mode("append")
        .jdbc("jdbc:postgresql://localhost:5432/postgres","newproducts",connectionProperties);

3.运行程序,并查看结果(如果在IDEA中开发不熟练,可以看我另一篇博文spark (java API) 在Intellij IDEA中开发并运行)。

3.1.直接在intellij IDEA(社区版)中运行。

a.在运行按钮的“Edit Configeration”中的VM option中添加“-Dspark.master=local”

这里写图片描述

3.2.在终端(Terminal)中运行。

/opt/spark-2.1.0-bin-hadoop2.7/bin/spark-submit \
  --class "SparkPostgresqlJdbc" \
  --master local[4] \
  --driver-class-path /home/xiaolei/.m2/repository/org/postgresql/postgresql/9.4.1212/postgresql-9.4.1212.jar \
  target/SparkPostgresqlJdbc-1.0-SNAPSHOT.jar

其中 --driver-class-path 指定下载的postgresql JDBC数据
库驱动路径,命令执行要在项目的根目录中(/home/xiaolei/Data/GS/Spark/SparkPostgresqlJdbc)。

这里写图片描述

查看Spark写入数据库中的数据

这里写图片描述

4.以下为项目中主要源码(完整项目源码Github):

4.1.项目配置源码pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>wangxiaolei</groupId>
    <artifactId>SparkPostgresqlJdbc</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency> <!-- Spark dependency -->
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.0</version>
        </dependency>
        <dependency>
            <groupId>org.postgresql</groupId>
            <artifactId>postgresql</artifactId>
            <version>9.4.1212</version>
        </dependency>
    </dependencies>
</project>

4.2.java源码SparkPostgresqlJdbc.java

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

import java.util.Properties;

/**
 * MIT.
 * Author: wangxiaolei(王小雷).
 * Date:17-2-9.
 * Project:SparkPostgresqlJdbc.
 */
public class SparkPostgresqlJdbc {
    public static void main (String[] args) {

        SparkSession spark = SparkSession
                .builder()
                .appName("SparkPostgresqlJdbc")
                .config("spark.some.config.option","some-value")
                .getOrCreate();
    //启动runSparkPostgresqlJdbc程序
        runSparkPostgresqlJdbc(spark);

        spark.stop();

    }

    private static void runSparkPostgresqlJdbc(SparkSession spark){
        //new一个属性
        System.out.println("确保数据库已经开启,并创建了products表和插入了数据");
        Properties connectionProperties = new Properties();


        //增加数据库的用户名(user)密码(password),指定postgresql驱动(driver)
        System.out.println("增加数据库的用户名(user)密码(password),指定postgresql驱动(driver)");
        connectionProperties.put("user","postgres");
        connectionProperties.put("password","123456");
        connectionProperties.put("driver","org.postgresql.Driver");



        //SparkJdbc读取Postgresql的products表内容
        System.out.println("SparkJdbc读取Postgresql的products表内容");
        Dataset<Row> jdbcDF = spark.read()
                .jdbc("jdbc:postgresql://localhost:5432/postgres","products",connectionProperties).select("name","price");
        //显示jdbcDF数据内容
        jdbcDF.show();



        //将jdbcDF数据新建并写入newproducts,append模式是连接模式,默认的是"error"模式。
        jdbcDF.write().mode("append")
                .jdbc("jdbc:postgresql://localhost:5432/postgres","newproducts",connectionProperties);

    }
}

完整项目源码Github

优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/70595

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
优质分享Android(本站安卓app)

优质分享Android(本站安卓app)

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Apache Tomcat7、8、9(Java Web服务器)

Apache Tomcat7、8、9(Java Web服务器)

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse(集成开发环境)

Eclipse(集成开发环境)

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

Sublime Text 一个代码编辑器

Sublime Text 一个代码编辑器

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。