首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/238558

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Storm构建分布式实时处理应用初探(转)

最近利用闲暇时间,又重新研读了一下Storm。认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算。对于Hadoop,本身不擅长实时的数据分析处理。两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念。本文中我就不具体阐述Strom集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的。 Storm本身是Apache托管的开源的分布式实时计算系统,它的前身是Twitter Storm。在Storm问世以前,处理海量的实时数据信息,大部分是类似于使用消息队列,加上工作进程/线程的方式。这使得构建这类的应用程序,变得异常的复杂。很多的业务逻辑中,你不得不考虑消息的发送和接收,线程之间的并发控制等等问题。而其中的业务逻辑可能只是占据整个应用的一小部分,而且很难做到业务逻辑的解耦。但是Storm的出现改变了这种局面,它首先抽象出数据流Stream的抽象概念,一个Stream指的是tuples组成的无边界的序列。后面又继续提出Spouts、...

Spark-理解RDD

问题 spark的计算模型是如何做到并行的呢?如果你有一箱香蕉,让三个人拿回家吃完,如果不拆箱子就会很麻烦对吧,哈哈,一个箱子嘛,当然只有一个人才能抱走了。这时候智商正常的人都知道要把箱子打开,倒出来香蕉,分别拿三个小箱子重新装起来,然后,各自抱回家去啃吧。 Spark和很多其他分布式计算系统都借用了这种思想来实现并行:把一个超大的数据集,切分成N个小堆,找M个执行器(M < N),各自拿一块或多块数据慢慢玩,玩出结果了再收集在一起,这就算执行完啦。那么Spark做了一项工作就是:凡是能够被我算的,都是要符合我的要求的,所以spark无论处理什么数据先整成一个拥有多个分块的数据集再说,这个数据集就叫RDD。 RDD RDD(Resilient Distributed Datasets,弹性分布式数据集)是一个分区的只读记录的集合。RDD只能通过在稳定的存储器或其他RDD的数据上的确定性操作来创建。我们把这些操作称作变换以区别其他类型的操作。例如 map,filter和join。 RDD在任何时候都不需要被”物化”(进行实际的变换并最终写入稳定的存储器上)。实际上,一个RDD有足够...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册