Spark学习之编程进阶——累加器与广播(5)
1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable)。累加器对信息进行聚合,而广播变量用来高效分发较大的对象。
2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量。
3. 累加器的用法:
file = sc.textFile(inputFile)
blankLines = sc.accumulator(0)
def extractCallSigns(Line):
globle blankLines
if (line == ""):
blankLines += 1
return line.split("")
callSigns = file.flatMap(extractCallSigns)
callSigns.saveAsTextFile(outputDir + "/callsigns")
print "Blank lines:%d" % blankLines.value
4. Spark的广播变量,它可以让程序高效地向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。
Scala代码使用广播变量查询国家
//查询RDD contactCounts中的呼号的对应位置。将呼号前缀
//读取为国家代码进行查询
val signPrefixes = sc.broadcast(loadCallSignTable())
val countryContactCounts = contactCounts.map{case (sign,count) =>
val country = lookupInArray(sign,signPrefixes.value)
(country,count)
}.reduceByKey((x,y) => x+y)
countryContactCounts.saveAsTextFile(outputDir + "/countries.text")
5. Spark在RDD上提供pipe()方法。Spark的pipe()方法可以让我们使用任意一种语言实现Spark作业中的部分逻辑,只要它的读写Unix标准流就行。