您现在的位置是:首页 > 文章详情

基于Keras机器学习库的分类预测

日期:2018-04-17点击:581

    在前面的博文中,我们分享了《基于scikit-learn机器学习库的分类预测》,本文将分享Keras机器学习库的分类预测。    

    一旦你在Keras中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:

如何在Keras中用我自己的模型进行预测?

在本教程中,你将会发现如何在Keras Python库的机器学习模型进行分类和回归预测。文章结构如下:

1.如何构建一个模型,为预测做好准备。

2.如何在Keras库中进行类别和概率预测。

3.如何在Keras库中进行回归预测。

738a4b8df373dc063c96229b6bf9dc519d922994 

一、构建一个模型

在进行预测之前,你必须训练一个最终模型。可以使用k-fold交叉验证或训练/测试数据,对模型进行训练。这样做的目的就是为了评估模型在样本外数据上的表现及其性能,比如新的数据。

你可以在这里了解更多关于如何训练最终模型

原文链接:https://yq.aliyun.com/articles/582510
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章