深度学习模型可预测细胞每分钟发育变化
美国麻省理工学院、密歇根大学和东北大学联合团队在最新《自然·方法》杂志上发表论文,介绍了一种名为“MultiCell”的几何深度学习模型。 该模型首次实现了在单细胞分辨率下,预测果蝇胚胎发育过程中,每个细胞在每分钟的行为变化。未来可在此基础上设计出通用的多细胞发育预测模型,构建“数字胚胎”,用于药物筛选甚至指导人工组织设计。 一个胚胎如何从一团细胞变成有头有尾、有器官的完整生命体,是发育生物学领域持续百年的核心谜题。虽然科学家早已知道细胞会分裂、移动、折叠,但具体到某一个细胞在下一分钟会有什么动态行为,却一直难以预测。 模型采用四维全胚胎数据进行训练和测试,这些数据具有亚微米级分辨率和较高的帧率,每个胚胎包含约5000个被标注边界和细胞核的细胞。在测试中,模型不仅能判断细胞是否会发生特定行为,还能精确预测行为发生的时间是几分钟后。 团队将这一方法与“阿尔法折叠”预测的蛋白质结构相类比:阿尔法折叠是从氨基酸序列推断蛋白质三维结构,“MultiCell”则是从细胞群落的几何特征,预测多细胞系统的自组织过程。不过,由于胚胎发育是持续演变的动态过程,后者远比前者复杂。 团队将该方法应用于果蝇早...
