零代码教你安装部署Stable Diffusion 3,一键生成高质量图像
本文分享自华为云社区《重磅!【支持中文】stable-diffusion-3安装部署教程-SD3 来了》,作者:码上开花_Lancer。
正如承诺的那样,Stability AI在6月12日正式开源了Stable Diffusion 3(Medium版本)!不愧是AI生图领域的“开源英雄”。最近一段时间,正当所有人都在为OpenAI发布Sora狂欢时,Stability AI更是推出了Stable Diffusion 3的技术报告。这两项技术不约而同都采用了Diffusion Transformer的架构设计。
值得注意的是,Stable Diffusion 3的强大性能其实并不仅限于Diffusion Transformer在架构上所带来的增益,其在提示词、图像质量、文字拼写方面的能力都得到了极大的提升。那么究竟是什么让Stable Diffusion 3如此强大?今天我们就从Stable Diffusion 3的技术报告中解读stable diffusion 3强大背后的技术原理。
接下来就讲讲,怎么在本地部署最新的Stable Diffusion 3,大致分为以下几步(开始操作前,请确保你有“畅通”的网络):
一、前期准备
1.登录华为云官方账号:
点击右上角“控制台”,搜索栏输入“ModelArts”
点击“开发环境”-“notebook”,“创建”:
进入创建notebook,名称“notebook-LangChain”,选择GPU规格,“GPU: 1*T4(16GB)|CPU: 8核 32GB”,点击“立即创建”,磁盘规格选择“50G”,点击“创建”
点击返回“任务中心”,点击notebook进入
以上步骤是从ModelArts上自己创建notebook,也可以直接点击案例进入体验--stable-diffusion-3重磅来袭。
二、下载模型
[Stable Diffusion 3 Medium](https://stability.ai/news/stable-diffusion-3-medium) 是一种多模态扩散转换器 (MMDiT) 文本到图像模型,其特点是在图像质量、排版、复杂提示理解和资源效率方面大大提高了性能。有关更多技术细节,请参阅[研究报告](https://stability.ai/news/stable-diffusion-3-research-paper)。
🔹 本案例需使用 Pytorch-2.0.1 GPU-V100 及以上规格运行
🔹 点击Run in ModelArts,将会进入到ModelArts CodeLab中,这时需要你登录华为云账号,如果没有账号,则需要注册一个,且要进行实名认证,参考[《如何创建华为云账号并且实名认证》](https://bbs.huaweicloud.com/blogs/427460) 即可完成账号注册和实名认证。 登录之后,等待片刻,即可进入到CodeLab的运行环境
🔹 出现 Out Of Memory ,请检查是否为您的参数配置过高导致,修改参数配置,重启kernel或更换更高规格资源进行规避❗❗❗
首先切换kernrl,
1. 下载代码和模型
import os import moxing as mox if not os.path.exists('opus-mt-zh-en'): mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/opus-mt-zh-en', 'opus-mt-zh-en') if not os.path.exists('stable-diffusion-3-medium-diffusers'): mox.file.copy_parallel('obs://modelbox-course/stable-diffusion-3-medium-diffusers','stable-diffusion-3-medium-diffusers') if not os.path.exists('/home/ma-user/work/frpc_linux_amd64'): mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/frpc_linux_amd64', '/home/ma-user/work/frpc_linux_amd64')
INFO:root:Using MoXing-v2.1.0.5d9c87c8-5d9c87c8 INFO:root:Using OBS-Python-SDK-3.20.9.1
import os import moxing as mox from PIL import Image,ImageDraw,ImageFont,ImageFilter # 导入海报需要的素材 if not os.path.exists("/home/ma-user/work/Style"): mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/StableDiffusion/Style/AI_paint.jpg',"/home/ma-user/work/Style/AI_paint.jpg") mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/StableDiffusion/Style/方正兰亭准黑_GBK.ttf',"/home/ma-user/work/Style/方正兰亭准黑_GBK.ttf") if os.path.exists("/home/ma-user/work/material"): print('Download success') else: raise Exception('Download Failed') else: print("Project already exists")
Project already exists
2. 配置运行环境
本案例依赖Python-3.9.15及以上环境,因此我们首先创建虚拟环境:
!/home/ma-user/anaconda3/bin/conda clean -i !/home/ma-user/anaconda3/bin/conda create -n python-3.9.15 python=3.9.15 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main !/home/ma-user/anaconda3/envs/python-3.9.15/bin/pip install ipykernel
/home/ma-user/anaconda3/lib/python3.7/site-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported versi RequestsDependencyWarning) /home/ma-user/anaconda3/lib/python3.7/site-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version! RequestsDependencyWarning) Collecting package metadata (current_repodata.json): done Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: done [2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m808.2/808.2 kB[0m [31m11.1 MB/s[0m eta [36m0:00:00[0m00:01[0m [?25hCollecting jupyter-client>=6.1.12 (from ipykernel) Successfully installed asttokens-2.4.1 comm-0.2.2 debugpy-1.8.2 decorator-5.1.1 exceptiongroup-1.2.1 executing-2.0.1 importlib-metadata-8.0.0 ipykernel-6.29.5 ipython-8.18.1 jedi-0.19.1 jupyter-client-8.6.2 jupyter-core-5.7.2 matplotlib-inline-0.1.7 nest-asyncio-1.6.0 packaging-24.1 parso-0.8.4 pexpect-4.9.0 platformdirs-4.2.2 prompt-toolkit-3.0.47 psutil-6.0.0 ptyprocess-0.7.0 pure-eval-0.2.2 pygments-2.18.0 python-dateutil-2.9.0.post0 pyzmq-26.0.3 six-1.16.0 stack-data-0.6.3 tornado-6.4.1 traitlets-5.14.3 typing-extensions-4.12.2 wcwidth-0.2.13 zipp-3.19.2
import json import os data = { "display_name": "python-3.9.15", "env": { "PATH": "/home/ma-user/anaconda3/envs/python-3.9.15/bin:/home/ma-user/anaconda3/envs/python-3.7.10/bin:/modelarts/authoring/notebook-conda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/anaconda3/envs/PyTorch-1.8/bin" }, "language": "python", "argv": [ "/home/ma-user/anaconda3/envs/python-3.9.15/bin/python", "-m", "ipykernel", "-f", "{connection_file}" ] } if not os.path.exists("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/"): os.mkdir("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/") with open('/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/kernel.json', 'w') as f: json.dump(data, f, indent=4)
创建完成后,稍等片刻,或刷新页面,点击右上角kernel选择python-3.9.15
查看Python版本
!python -V
Python 3.9.15
查看GPU型号,至少需要32GB显存
!nvidia-smi
Wed Jul 10 23:52:26 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla V100-PCIE... On | 00000000:00:0D.0 Off | 0 | | N/A 30C P0 25W / 250W | 0MiB / 32510MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
安装SD3依赖包
!pip install --upgrade pip !pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 !pip install diffusers transformers sentencepiece accelerate protobuf gradio spaces !cp /home/ma-user/work/frpc_linux_amd64 /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2 !chmod +x /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple Requirement already satisfied: pip in /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages (24.0) Collecting pip Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/e7/54/0c1c068542cee73d8863336e974fc881e608d0170f3af15d0c0f28644531/pip-24.1.2-py3-none-any.whl (1.8 MB) [2K [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.8/1.8 MB[0m [31m28.5 MB/s[0m eta [36m0:00:00[0m00:01[0m [?25hInstalling collected packages: pip Attempting uninstall: pip Found existing installation: pip 24.0 Uninstalling pip-24.0: Successfully uninstalled pip-24.0 Successfully installed pip-24.1.2 Successfully installed accelerate-0.32.1 aiofiles-23.2.1 altair-5.3.0 annotated-types-0.7.0 anyio-4.4.0 attrs-23.2.0 click-8.1.7 contourpy-1.2.1 cycler-0.12.1 diffusers-0.29.2 dnspython-2.6.1 email_validator-2.2.0 fastapi-0.111.0 fastapi-cli-0.0.4 ffmpy-0.3.2 fonttools-4.53.1 fsspec-2024.6.1 gradio-4.37.2 gradio-client-1.0.2 h11-0.14.0 httpcore-1.0.5 httptools-0.6.1 httpx-0.27.0 huggingface-hub-0.23.4 importlib-resources-6.4.0 jsonschema-4.23.0 jsonschema-specifications-2023.12.1 kiwisolver-1.4.5 markdown-it-py-3.0.0 matplotlib-3.9.1 mdurl-0.1.2 numpy-1.26.4 orjson-3.10.6 pandas-2.2.2 protobuf-5.27.2 psutil-5.9.8 pydantic-2.8.2 pydantic-core-2.20.1 pydub-0.25.1 pyparsing-3.1.2 python-dotenv-1.0.1 python-multipart-0.0.9 pytz-2024.1 pyyaml-6.0.1 referencing-0.35.1 regex-2024.5.15 rich-13.7.1 rpds-py-0.19.0 ruff-0.5.1 safetensors-0.4.3 semantic-version-2.10.0 sentencepiece-0.2.0 shellingham-1.5.4 sniffio-1.3.1 spaces-0.28.3 starlette-0.37.2 tokenizers-0.19.1 tomlkit-0.12.0 toolz-0.12.1 tqdm-4.66.4 transformers-4.42.3 typer-0.12.3 tzdata-2024.1 ujson-5.10.0 uvicorn-0.30.1 uvloop-0.19.0 watchfiles-0.22.0 websockets-11.0.3
3. 生成单张图像
#@title 填写英文提示词 import torch from diffusers import StableDiffusion3Pipeline # 清理 GPU 缓存 torch.cuda.empty_cache() # 确保使用半精度浮点数 torch_dtype = torch.float16 # 尝试减少推理步骤 num_inference_steps = 20 # 调整引导比例 guidance_scale = 5.0 # 定义 Prompt prompt = "cinematic photo of a red apple on a table in a classroom, on the blackboard are the words go big or go home written in chalk" #@param {type:"string"} # 加载模型并将其移动到 GPU pipe = StableDiffusion3Pipeline.from_pretrained("stable-diffusion-3-medium-diffusers", torch_dtype=torch_dtype).to("cuda") # 根据提供的 Prompt 生成图像 image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] # 定义保存图像的路径 save_path = '/home/ma-user/work/your_generated_image.png' # 保存图像到指定路径 image.save(save_path) # 如果需要在本地查看图像,可以使用 show 方法 image.show() prompt = "cinematic photo of a red apple on a table in a classroom, on the blackboard are the words go big or go home written in chalk" #@param {type:"string"}
/home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm Loading pipeline components...: 33%|███▎ | 3/9 [00:00<00:00, 7.87it/s]You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers Loading pipeline components...: 44%|████▍ | 4/9 [00:00<00:00, 5.87it/s] Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s][A Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 3.92it/s][A Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.95it/s][A Loading pipeline components...: 100%|██████████| 9/9 [00:02<00:00, 3.06it/s] 100%|██████████| 20/20 [00:08<00:00, 2.27it/s]
注意:
出现 Out Of Memory ,尝试重启 kernel 再次运行❗❗❗
4.填写作品名称和作者姓名
#@title 填写作品名称和作者姓名 from PIL import Image, ImageDraw, ImageFont, ImageFilter def gen_poster(img, txt1, txt2, path, zt): # 定义字体和颜色 font1 = ImageFont.truetype(zt, 30) font2 = ImageFont.truetype(zt, 25) # 创建一个可以在图像上绘制的 Draw 对象 img_draw = ImageDraw.Draw(img) # 在图像上绘制文本 img_draw.text((180, 860), txt1, font=font1, fill='#961900') img_draw.text((130, 903), txt2, font=font2, fill='#252b3a') # 保存图像 img.save(path) # 定义模板图像路径和字体路径 template_img = "/home/ma-user/work/Style/AI_paint.jpg" zt = r"/home/ma-user/work/Style/方正兰亭准黑_GBK.ttf" # 打开模板图像 temp_image = Image.open(template_img).convert("RGBA") # 打开生成的图像 image_path = "/home/ma-user/work/your_generated_image.png" # 替换为你生成的图像路径 image = Image.open(image_path) # 计算新的大小以适应模板图像的宽度,同时保持图片的原始比例 width_ratio = temp_image.width / image.width new_height = int(image.height * width_ratio) new_size = (temp_image.width, new_height) # 调整生成的图像大小,使用 LANCZOS 重采样算法 image = image.resize(new_size, Image.Resampling.LANCZOS) # 粘贴调整大小后的图像到模板上 # 假设图像粘贴的起始点是 (40, 266) temp_image.paste(image, (40, 266)) # 定义作品名称和作者姓名 title_char = "苹果" #@param {type:"string"} author_char = "ModelArts" #@param {type:"string"} # 定义保存海报的路径 savepath = '/home/ma-user/work/AI_paint_output.png' # 确保路径正确,并且有写权限 # 调用函数生成海报 gen_poster(temp_image, title_char, author_char, savepath, zt) # 使用 Image.open 来打开并显示生成的海报 Image.open(savepath).show()
5. 运行Gradio应用
with gr.Blocks(css=css) as demo: gr.HTML("""<h1 align="center">Stable Diffusion 3</h1>""") with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="提示词", show_label=False, max_lines=1, placeholder="请输入中文提示词", container=False, ) run_button = gr.Button("生成", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("更多参数", open=False): negative_prompt = gr.Text( label="负面提示词", max_lines=1, placeholder="请输入负面提示词", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="随机种子", value=True) with gr.Row(): width = gr.Slider( label="宽", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="高", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="迭代步数", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch(share=True)
Writing demo.py
运行Gradio应用,运行成功后点击 Running on public URL后的网页链接即可体验!
!python demo.py
Loading pipeline components...: 56%|███████▏ | 5/9 [00:02<00:01, 2.28it/s]You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers Loading pipeline components...: 67%|████████▋ | 6/9 [00:02<00:01, 2.61it/s] Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s][A Loading checkpoint shards: 50%|█████████ | 1/2 [00:00<00:00, 3.54it/s][A Loading checkpoint shards: 100%|██████████████████| 2/2 [00:00<00:00, 3.53it/s][A Loading pipeline components...: 100%|█████████████| 9/9 [00:03<00:00, 2.83it/s] /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() return self.fget.__get__(instance, owner)() /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/transformers/models/marian/tokenization_marian.py:175: UserWarning: Recommended: pip install sacremoses. warnings.warn("Recommended: pip install sacremoses.") Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU. Running on local URL: http://127.0.0.1:7860 Running on public URL: https://9c48446865ca38cc99.gradio.live
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
一幅画的是一位宇航员骑着一只穿着芭蕾舞裙的猪,手里拿着一把粉红色的伞,猪旁边的地上是一只戴着大礼帽的知更鸟,角落里写着“稳定扩散”的字样。
A picture of an astronaut riding on a pig in a ballet dress with a pink umbrella next to a big hat on the ground, with the word “stable spread” in the corner.
出现 Out Of Memory ,尝试重启 kernel 再次运行❗❗❗
浏览器打开local URL: http://127.0.0.1:7860 地址,
运行界面:
三、其他案例展示:
Prompt: cinematic photo of a red apple on a table in a classroom, on the blackboard are the words "go big or go home" written in chalk
提示:教室里的桌子上有一个红苹果的电影照片,黑板上用粉笔写着“要么做大,要么回家”
Prompt: a painting of an astronaut riding a pig wearing a tutu holding a pink umbrella, on the ground next to the pig is a robin bird wearing a top hat, in the corner are the words "stable diffusion"
提示:一幅画的是一位宇航员骑着一只穿着芭蕾舞裙的猪,手里拿着一把粉红色的伞,猪旁边的地上是一只戴着大礼帽的知更鸟,角落里写着“稳定扩散”的字样。
Prompt: Three transparent glass bottles on a wooden table. The one on the left has red liquid and the number 1. The one in the middle has blue liquid and the number 2. The one on the right has green liquid and the number 3.
提示:三个透明玻璃瓶放在木桌上。左边的是红色液体和数字1。中间有蓝色液体和数字2。右边的是绿色液体和数字3。
参考:
官网:Stable Diffusion 3 — Stability AI
案例:stable-diffusion-3重磅来袭 (huaweicloud.com)

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
ODPS开发大全:进阶篇
本文旨在收集整理ODPS开发中入门及进阶级知识,尽可能涵盖大多数ODPS开发问题,成为一本mini百科全书,后续也会持续更新。希望通过笔者的梳理和理解,帮助刚接触ODPS开发的同学快速上手。 本系列分为两部分:入门篇和进阶篇。 ODPS开发大全:入门篇 常用参数设置 常用的调整无外乎调整map、join、reduce的个数,map、join、reduce的内存大小。 以ODPS的参数设置为例,参数可能因版本不同而略有差异。 参数类型 具体使用 Map设置 set odps.sql.mapper.cpu=100 作用:设置处理Map Task每个Instance的CPU数目,默认为100,在[50,800]之间调整。场景:某些任务如果特别耗计算资源的话,可以适当调整Cpu数目。对于大多数Sql任务来说,一般不需要调整Cpu个数的。 set odps.sql.mapper.memory=1024 作用:设定Map Task每个Instance的Memory大小,单位M,默认1024M,在[256,12288]之间调整。场景:当Map阶段的Instance有Writer Dumps时,可以适...
- 下一篇
在 Windows 平台搭建 MQTT 服务
引言 MQTT 是一种轻量级、基于发布/订阅模式的消息传输协议,旨在用极小的代码空间和网络带宽为物联网设备提供简单、可靠的消息传递服务。MQTT 经过多年的发展,如今已被广泛应用于资源开采、工业制造、移动通信、智能汽车等各行各业,使得 MQTT 成为了物联网传输协议的事实标准。 出于稳定性、可靠性、成本等多方面的考虑,众多 MQTT 服务实现更倾向于选择拥有丰富开源生态系统的 Linux 环境,Windows 平台上可选的 MQTT 服务相对有限。NanoMQ 是用于物联网边缘的超轻量级 MQTT 消息服务器,具有极高的性能性价比,适用于各类边缘计算平台。NanoMQ 有着强大的跨平台和可兼容能力,不仅可以用于以 Linux 为基础的各类平台,也为 Windows 平台提供了 MQTT 服务的新选择。 本文将以 NanoMQ 为例,使用二进制包和源代码编译两种方式演示如何在 Windows 平台中快速搭建 MQTT 服务。 NanoMQ 简介 NanoMQ 是 EMQ 于 2021 年发布的开源项目,旨在为物联网边缘场景提供轻量级、快速、支持多线程的 MQTT 消息服务器和消息总线。N...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- 2048小游戏-低调大师作品
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- SpringBoot2全家桶,快速入门学习开发网站教程
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS6,CentOS7官方镜像安装Oracle11G