用好语言模型:temperature、top-p等核心参数解析
编者按:我们如何才能更好地控制大模型的输出? 本文将介绍几个关键参数,帮助读者更好地理解和运用 temperature、top-p、top-k、frequency penalty 和 presence penalty 等常见参数,以优化语言模型的生成效果。 文章详细解释了这些参数的作用机制以及如何在质量与多样性之间进行权衡。提高 temperature 可以增加多样性但会降低质量。top-p 和 top-k 可以在不损失多样性的前提下提高质量。frequency penalty 和 presence penalty 可以增加回复的词汇多样性和话题多样性。 最后,文章提供了参数配置的具体建议和技巧,供读者参考使用。选择合适的参数能显著提高语言模型的表现,更是进行 prompt engineering 的重要一环。 以下是译文,enjoy! 作者 | Samuel Montgomery 编译|岳扬 🚢🚢🚢欢迎小伙伴们加入AI技术软件及技术交流群,追踪前沿热点,共探技术难题~ 当我们通过 Playground 或 API 使用语言模型时,可能会被要求选择一些推理参数。但是对大多数人来说...
