如何使用最流行框架Tensorflow进行时间序列分析——第二篇
更多深度文章,请关注:https://yq.aliyun.com/cloud
看深度学习框架排名第一的TensorFlow如何进行时序预测——第一篇
时间序列分析是一种动态数据处理的统计方法。根据对系统进行观测得到的时间序列数据,用曲线拟合的方法对系统进行客观的描述。
如今,时间序列数据出现在金融,信号处理,语音识别和医学等诸多领域。解决时间序列问题的标准方法通常需要手动提炼数据特征,然后才能将其输入到机器学习算法中。这通常还要求开发设计人员掌握数据所属学科领域的知识特征,以便在算法中加入特征过滤。例如,如果处理信号(即EEG信号的分类),则需要掌握的知识特征涉及各种频带的功率谱及Hjorth参数。对于认真钻研本领域的程序猿来说,这简直就是噩梦。
那么是不是不掌握这些学科领域的知识特征,我们就没有办法进行模型设计了呢?
其实答案不然,在图像