每日一博 | 细粒度情感分析在到餐场景中的应用
经典的细粒度情感分析(ABSA,Aspect-based Sentiment Analysis)主要包含三个子任务,分别为属性抽取、观点抽取以及属性-观点对的情感倾向判定三个级联任务。本文介绍了美团到店到餐应用算法团队通过结合学界最先进的阅读理解、注意力机制等方面的实体抽取、情感分析经验,解决到餐(菜品,属性,观点,情感)四元组抽取问题,并在多个业务场景应用落地,希望能对从事相关工作的同学有所帮助或启发。 一、背景 作为一家生活服务在线电子商务平台,美团致力于通过科技链接消费者和商户,努力为消费者提供品质生活。到店餐饮(简称到餐)作为美团的核心业务之一,是满足用户堂食消费需求、赋能餐饮商户在线运营的重要平台,在服务百万级别的餐饮商户和亿级别C端用户的过程中,积累了海量的用户评论信息(User Generated Content, UGC),包含了用户到店消费体验之后的真情实感,如果能够有效提取其中的关键的情感极性、观点表达,不仅可以辅助更多用户做出消费决策,同时也可以帮助商户收集经营状况的用户反馈信息。 近年来,大规模预训练模型(BERT)、提示学习(Prompt)等NLP技术飞速发展...