首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/534611

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

谷歌推出Tangent开源库,在Python源代码上做自动微分

本文来自AI新媒体量子位(QbitAI) 谷歌今天推出了一个新的开源Python自动微分库:Tangent。 和现有的机器学习库不同,Tangent是一个源代码到源代码的系统,使用Python函数f,并用一个新的Python函数来计算f的梯度。这能帮用户更好地看清梯度计算,并更简单地对梯度进行用户级编辑和调试。 此外,Tangent还有更多调试和设计机器学习模型的功能: 轻松调试反向传递过程(backward pass) 快速的gradient surgery 正向模式自动微分 高校的Hessian向量积 代码优化 本文简要介绍了Tangent API,包括如何用它在Python中生成易于理解、调试和修改的梯度代码。 神经网络为机器学习带来了巨大的进步,而我们训练神经网络来完成各类任务的基本思想已经存在30年了,它就是反向模式自动微分(reverse

AI产品开发指南:5大核心环节搞定机器学习工作流

本文来自AI新媒体量子位(QbitAI) Python写得像英语一样6,神经网络、决策树烂熟于心,但如果不能动手将这些算法部署到实际系统中,这一切还有什么意义? 于是,国外的问答网站Quora上就有了这个问题: 怎样开发出一个AI系统或者产品? 量子位觉得,有一个来自Sean McClure的回答很不错。Sean是美国一家医疗公司的数据科学家,他从机器学习工作流的五个核心环节讲起,系统地回答了这个问题。 以下内容译自他的回答。 要构建一个AI系统或产品,你要处理好5个核心环节,我们通常称之为“机器学习工作流”。这些步骤分别是: 1.数据收集与分析 2.数据准备 3.模型构建 4.模型验证与测试 5.模型部署 这是一个反复迭代的过程,每次循环都能改进我们构建的模型。 你要创造的是一个产品,所以,应该把这些步骤视为一个将原始数据转换成预测输出的数据工

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册