java安全编码指南之:异常处理
异常简介
先上个图,看一下常见的几个异常类型。
所有的异常都来自于Throwable。Throwable有两个子类,Error和Exception。
Error通常表示的是严重错误,这些错误是不建议被catch的。
注意这里有一个例外,比如ThreadDeath也是继承自Error,但是它表示的是线程的死亡,虽然不是严重的异常,但是因为应用程序通常不会对这种异常进行catch,所以也归类到Error中。
Exception表示的是应用程序希望catch住的异常。
在Exception中有一个很特别的异常叫做RuntimeException。RuntimeException叫做运行时异常,是不需要被显示catch住的,所以也叫做unchecked Exception。而其他非RuntimeException的Exception则需要显示try catch,所以也叫做checked Exception。
不要忽略checked exceptions
我们知道checked exceptions是一定要被捕获的异常,我们在捕获异常之后通常有两种处理方式。
第一种就是按照业务逻辑处理异常,第二种就是本身并不处理异常,但是将异常再次抛出,由上层代码来处理。
如果捕获了,但是不处理,那么就是忽略checked exceptions。
接下来我们来考虑一下java中线程的中断异常。
java中有三个非常相似的方法interrupt,interrupted和isInterrupted。
isInterrupted()只会判断是否被中断,而不会清除中断状态。
interrupted()是一个类方法,调用isInterrupted(true)判断的是当前线程是否被中断。并且会清除中断状态。
前面两个是判断是否中断的方法,而interrupt()就是真正触发中断的方法。
它的工作要点有下面4点:
- 如果当前线程实例在调用Object类的wait(),wait(long)或wait(long,int)方法或join(),join(long),join(long,int)方法,或者在该实例中调用了Thread.sleep(long)或Thread.sleep(long,int)方法,并且正在阻塞状态中时,则其中断状态将被清除,并将收到InterruptedException。
- 如果此线程在InterruptibleChannel上的I / O操作中处于被阻塞状态,则该channel将被关闭,该线程的中断状态将被设置为true,并且该线程将收到java.nio.channels.ClosedByInterruptException异常。
- 如果此线程在java.nio.channels.Selector中处于被被阻塞状态,则将设置该线程的中断状态为true,并且它将立即从select操作中返回。
- 如果上面的情况都不成立,则设置中断状态为true。
看下面的例子:
public void wrongInterrupted(){ try{ Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } }
上面代码中我们捕获了一个InterruptedException,但是我们仅仅是打印出了异常信息,并没有做任何操作。这样程序的表现和没有发送一异常一样,很明显是有问题的。
根据上面的介绍,我们知道,interrupted()方法会清除中断状态,所以,如果我们自身处理不了异常的情况下,需要重新调用Thread.currentThread().interrupt()重新抛出中断,由上层代码负责处理,如下所示。
public void correctInterrupted(){ try{ Thread.sleep(1000); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }
不要在异常中暴露敏感信息
遇到异常的时候,通常我们需要进行一定程度的日志输出,从而来定位异常。但是我们在做日志输出的时候,一定要注意不要暴露敏感信息。
下表可以看到异常信息可能会暴露的敏感信息:
除了敏感信息之外,我们还要做好日志信息的安全保护。
在处理捕获的异常时,需要恢复对象的初始状态
如果我们在处理异常的时候,修改了对象中某些字段的状态,在捕获异常的时候需要怎么处理呢?
private int age=30; public void wrongRestore(){ try{ age=20; throw new IllegalStateException("custom exception!"); }catch (IllegalStateException e){ System.out.println("we do nothing"); } }
上面的例子中,我们将age重置为20,然后抛出了异常。虽然抛出了异常,但是我们并没有重置age,最后导致age最终被修改了。
整个restore的逻辑没有处理完毕,但是我们部分修改了对象的数据,这是很危险的。
实际上,我们需要一个重置:
public void rightRestore(){ try{ age=20; throw new IllegalStateException("custom exception!"); }catch (IllegalStateException e){ System.out.println("we do nothing"); age=30; } }
不要手动完成finally block
我们在使用try-finally和try-catch-finally语句时,一定不要在finally block中使用return, break, continue或者throw语句。
为什么呢?
根据Java Language Specification(JLS)的说明,finally block一定会被执行,不管try语句中是否抛出异常。
在try-finally和try-catch-finally语句中,如果try语句中抛出了异常R,然后finally block被执行,这时候有两种情况:
- 如果finally block正常执行,那么try语句被终止的原因是异常R。
- 如果在finally block中抛出了异常S,那么try语句被终止的原因将会变成S。
我们举个例子:
public class FinallyUsage { public boolean wrongFinally(){ try{ throw new IllegalStateException("my exception!"); }finally { System.out.println("Code comes to here!"); return true; } } public boolean rightFinally(){ try{ throw new IllegalStateException("my exception!"); }finally { System.out.println("Code comes to here!"); } } public static void main(String[] args) { FinallyUsage finallyUsage=new FinallyUsage(); finallyUsage.wrongFinally(); finallyUsage.rightFinally(); } }
上面的例子中,我们定义了两个方法,一个方法中我们在finally中直接return,另一方法中,我们让finally正常执行完毕。
最终,我们可以看到wrongFinally将异常隐藏了,而rightFinally保留了try的异常。
同样的,如果我们在finally block中抛出了异常,我们一定要记得对其进行捕获,否则将会隐藏try block中的异常信息。
不要捕获NullPointerException和它的父类异常
通常来说NullPointerException表示程序代码有逻辑错误,是需要程序员来进行代码逻辑修改,从而进行修复的。
比如说加上一个null check。
不捕获NullPointerException的原因有三个。
- 使用null check的开销要远远小于异常捕获的开销。
- 如果在try block中有多个可能抛出NullPointerException的语句,我们很难定位到具体的错误语句。
- 最后,如果发生了NullPointerException,程序基本上不可能正常运行或者恢复,所以我们需要提前进行null check的判断。
同样的,程序也不要对NullPointerException的父类RuntimeException, Exception, or Throwable进行捕捉。
不要throw RuntimeException, Exception, or Throwable
我们抛出异常主要是为了能够找到准确的处理异常的方法,如果直接抛出RuntimeException, Exception, 或者 Throwable就会导致程序无法准确处理特定的异常。
通常来说我们需要自定义RuntimeException, Exception, 或者 Throwable的子类,通过具体的子类来区分具体的异常类型。
不要抛出未声明的checked Exception
一般来说checked Exception是需要显示catch住,或者在调用方法上使用throws做申明的。
但是我们可以通过某些手段来绕过这种限制,从而在使用checked Exception的时候不需要遵守上述规则。
当然这样做是需要避免的。我们看一个例子:
private static Throwable throwable; private ThrowException() throws Throwable { throw throwable; } public static synchronized void undeclaredThrow(Throwable throwable) { ThrowException.throwable = throwable; try { ThrowException.class.newInstance(); } catch (InstantiationException e) { } catch (IllegalAccessException e) { } finally { ThrowException.throwable = null; } }
上面的例子中,我们定义了一个ThrowException的private构造函数,这个构造函数会throw一个throwable,这个throwable是从方法传入的。
在undeclaredThrow方法中,我们调用了ThrowException.class.newInstance()实例化一个ThrowException实例,因为需要调用构造函数,所以会抛出传入的throwable。
因为Exception是throwable的子类,如果我们在调用的时候传入一个checked Exception,很明显,我们的代码并没有对其进行捕获:
public static void main(String[] args) { ThrowException.undeclaredThrow( new Exception("Any checked exception")); }
怎么解决这个问题呢?换个思路,我们可以使用Constructor.newInstance()来替代class.newInstance()。
try { Constructor constructor = ThrowException.class.getConstructor(new Class<?>[0]); constructor.newInstance(); } catch (InstantiationException e) { } catch (InvocationTargetException e) { System.out.println("catch exception!"); } catch (NoSuchMethodException e) { } catch (IllegalAccessException e) { } finally { ThrowException.throwable = null; }
上面的例子,我们使用Constructor的newInstance方法来创建对象的实例。和class.newInstance不同的是,这个方法会抛出InvocationTargetException异常,并且把所有的异常都封装进去。
所以,这次我们获得了一个checked Exception。
原文链接
本文为阿里云原创内容,未经允许不得转载。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
NumPy 广播机制与 C 语言扩展
前两篇主要针对 NumPy 中的基本概念,即高维数组 ndarray 的数据结构以及关键方法作了介绍。本篇重点介绍广播机制以及针对高维数组的轴操作,最后对 NumPy 的 C 语言扩展作了介绍。 广播机制 转置等轴操作 通用函数 ufunc NumPy 之 C 语言扩展 1广播 NumPy 运算通常是在两个数组的元素级别上进行的。最简单情况就是,两个具有完全相同 shape 的数组运算,如下面例子所示, a=np.array([1.0,2.0,3.0])b=np.array([2.0,2.0,2.0])a*b numpy 的广播机制是指在执行算术运算时处理不同 shape 的数组的方式。在一定规则下,较小的数组在较大的数组上广播,从而使得数组具有兼容的 shape。 a=np.array([1.0,2.0,3.0])b=2.0a*b 发现这两个计算的结果是一样的,但第二个是有广播机制在发挥作用。 广播规则 在两个数组上执行运算时,NumPy 比较它们的形状。它从 shape 的最右边开始往左一一比较。如果所有位子比较下来都是下面两种情况之一, 相同位子上的两个数字相等 或者其中之一是 ...
- 下一篇
初探 Objective-C/C++ 异常处理实现机制
作者: Cyandev, iOS 和 MacOS 开发者,目前就职于字节跳动 0x00 前言 异常处理是许多高级语言都具有的特性,它可以直接中断当前函数并将控制权转交给能够处理异常的函数。不同语言在异常处理的实现上各不相同,本文主要来分析一下 Objective-C 和 C++ 这两个语言。 为什么要把 Objective-C 和 C++ 放在一起呢?因为它们在实现机制上太像了,更严格地说,Objective-C 的异常处理机制就是借助 C++ 来实现的。而说到 Objective-C 的异常处理,还需要引出一个问题,就是内存泄漏。它产生的原因是什么?要怎么解决?这里我们先留个疑问,在文章后面会解释。 0x10 异常处理做了什么 异常处理,核心不在异常,而在处理。也就是说不管你抛出的是 NSException 还是原始类型,这只是一个信息承载的方式,异常处理最关键的是如何把这个异常传递给能够处理它的人。还有最重要的一点,在这个过程中把现场“清理干净”(这也是 C++ RAII 的精髓所在)。 考虑下面的代码片段: staticvoidbar(){structtracker{~track...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Docker安装Oracle12C,快速搭建Oracle学习环境
- SpringBoot2全家桶,快速入门学习开发网站教程
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- CentOS关闭SELinux安全模块
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- CentOS6,CentOS7官方镜像安装Oracle11G
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Hadoop3单机部署,实现最简伪集群