首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/4586894/blog/4524948

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

xPlugin 1.3.10 发布,Android 消息化插件方案

更新内容: 修复api30无法调用setHiddenApiExemptions的问题 优化Module初始化过程 gradle添加依赖: // 最低gradle编译插件版本要求 com.android.tools.build:gradle:4.0.0, // 从该版本开始gradle已支持 complieOnly 方式添加 aar 依赖 // 宿主中 implementation 'org.xutils:xutils:3.9.0' implementation 'org.xplugin:xplugin:1.3.10' // 插件中 compileOnly 'org.xutils:xutils:3.9.0' // 可选 compileOnly 'org.xplugin:xplugin:1.3.10' 一. 介绍 Android消息化插件框架利用消息最大化解耦, 使插件在启动时可异步加载, 提高应用启动效率. 目前所有接口通过Android API [19, 30] 各版本兼容测试. 特性: 资源共享: 可指定Runtime Module, 其他Module可使用...

一文读懂EM期望最大化算法和一维高斯混合模型GMM

EM最大期望算法是一个数值求解似然函数极大值的迭代算法,就好像梯度下降算法是一种数值求解损失函数极小值的迭代算法一样。 EM算法通常适合于随机变量依赖于另外一些不可观测的随机变量(称之为隐含变量或者中间变量)的场景。 此时由于似然函数的表示形式较为复杂(含有对隐含变量的累加求和或者积分),难以求导获取似然函数的极大值,也无法方便地应用梯度下降算法进行优化。 而EM算法是一个类似梯度下降算法的迭代算法,它首先给随机变量分布参数赋初始值,然后寻找到了一个便于优化的似然函数的下界 (恰好为似然函数在某个分布下的期望Expectation,期望中消去了隐变量),并通过不断地优化(Maximization) 这个下界求解似然函数的极值。 EM算法在机器学习的许多算法中都有使用到,如 KMeans:实际上K-Means是一种Hard EM算法, 隐变量直接取最大概率的位置。 支持向量机的SMO算法 LDA主题模型参数估计 混合高斯模型的参数估计 HMM隐马尔科夫模型的参数估计 本篇文章我们将详述EM算法的推导过程,并以一维GMM高斯混合模型为例,示范EM算法的应用方法。 公众号后台回复关键字:源码...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册