时间卷积网络TCN:时间序列处理的新模型
这篇文章回顾了基于TCN的解决方案的最新创新。我们首先介绍了一个运动检测的案例研究,并简要回顾了TCN架构及其相对于传统方法的优势,如卷积神经网络(CNN)和递归神经网络(RNN)。然后,我们介绍了一些使用TCN的应用,包括改进交通预测,声音事件定位和检测,以及概率预测。 简单回顾一下TCN Lea等人(2016)的开创性工作首次提出了用于基于视频的动作分割的时间卷积网络(tns)。这个传统的过程包括两个步骤:第一,使用(通常)编码时空信息的CNN计算低级特征;第二,使用(通常)RNN将这些低级特征输入到一个获取高级时间信息的分类器中。这种方法的主要缺点是它需要两个独立的模型。TCN提供了一种统一的方法来以层次的方式捕获所有两个级别的信息。 编码器-解码器框架如图1所示,最关键的问题如下:TCN可以接受任意长度的序列,并将其输出为相同长度。因果卷积在使用一维全卷积网络结构时使用。一个关键的特征是t时刻的输出只与t之前的元素进行卷积。 随着严等人(2020)最近发表的有关TCN用于天气预报任务的研究成果,TCN上甚至出现了有关TCN的讨论。在他们的工作中,进行了TCN和LSTM的对比实验...






