每日一博 | 动手实现 LRU 算法,以及 Caffeine 和 Redis 中的缓存淘汰策略
我是风筝,公众号「古时的风筝」。 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面。 那天我在 LeetCode 上刷到一道 LRU 缓存机制的问题,第 146 题,难度为中等,题目如下。 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。 获取数据 get(key) - 如果关键字 (key) 存在于缓存中,则获取关键字的值(总是正数),否则返回 -1。 写入数据 put(key, value) - 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字/值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。 LRU 全名 Least Recently Used,意为最近最少使用,注重最近使用的时间,是常用的缓存淘汰策略。为了加快访问速度,缓存可以说无处不在,无论是计算机内部的缓存,还是 Java 程序中的 JVM 缓存,又或者是网站架构中的 Redis 缓存。缓存虽然好用,但缓存内...
