首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/751089

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Hadoop hdfs 基础操作 client Api(1)

1. 初始化连接 @Before public void setup() throws Exception { configuration = new Configuration(); System.out.println(); configuration.set("dfs.replication", "1"); // configuration.set("hadoop.tmp.dir","/home/hadoop0/data/tmp"); Iterator iterator = configuration.iterator(); while(iterator.hasNext() ){ System.out.println(iterator.next()); //打印所有配置或默认参数 } fileSystem = FileSystem.get(new URI(HDFS_PATH), configuration, HDFS_USER); System.out.println("--------------setup-------------"); } @After public voi...

vivo 大规模特征存储实践

本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/u1LrIBtY6wNVE9lzvKXWjA 作者:黄伟锋 本文旨在介绍 vivo 内部的特征存储实践、演进以及未来展望,抛砖引玉,吸引更多优秀的想法。 一、需求分析 AI 技术在 vivo 内部应用越来越广泛,其中特征数据扮演着至关重要的角色,用于离线训练、在线预估等场景,我们需要设计一个系统解决各种特征数据可靠高效存储的问题。 1. 特征数据特点 (1)Value 大 特征数据一般包含非常多的字段,导致最终存到 KV 上的 Value 特别大,哪怕是压缩过的。 (2)存储数据量大、并发高、吞吐大 特征场景要存的数据量很大,内存型的 KV(比如 Redis Cluster)是很难满足需求的,而且非常昂贵。不管离线场景还是在线场景,并发请求量大,Value 又不小,吞吐自然就大了。 (3)读写性能要求高,延时低 大部分特征场景要求读写延时非常低,而且持续平稳,少抖动。 (4)不需要范围查询 大部分场景都是单点随机读写。 (5)定时灌海量数据 很多特征数据刚被算出来的时候,是存在一些面...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册