首页 文章 精选 留言 我的

精选列表

搜索[主从同步],共10000篇文章
优秀的个人博客,低调大师

gRPC Spring Boot Starter 2.6.0 正式发布,全新文档页同步上线

gRPC Spring Boot Starter 2.6.0 正式发布了,gRPC Spring Boot Starter 项目是一个 gRPC 的 Spring Boot 模块。通过在 Spring Boot 中内嵌一个 gRPC Server 对外提供服务,并支持Spring Cloud 的服务发现、注册、链路跟踪等等。 gRPC Spring Boot Starter 2.6.0 新增特性: 暴露 channel 的连接状态#285 服务端支持使用self连接自身#283 使用 gRPC 的 NameResolverRegistry#280 ...... 同时发布了全新的文 档 页。

优秀的个人博客,低调大师

分布式锁和同步

8.1. 可重入锁(Reentrant Lock) 基于Redis的Redisson分布式可重入锁RLock Java对象实现了java.util.concurrent.locks.Lock接口。 RLock lock = redisson.getLock("anyLock"); // 最常见的使用方法 lock.lock(); 大家都知道,如果负责储存这个分布式锁的Redis节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。 另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。 // 加锁以后10秒钟自动解锁 // 无需调用unlock方法手动解锁 lock.lock(10, TimeUnit.SECONDS); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS); ... lock.unlock(); Redisson同时还为分布式锁提供了异步执行的相关方法: RLock lock = redisson.getLock("anyLock"); lock.lockAsync(); lock.lockAsync(10, TimeUnit.SECONDS); Future<Boolean> res = lock.tryLockAsync(100, 10, TimeUnit.SECONDS); RLock对象完全符合Java的Lock规范。也就是说只有拥有锁的进程才能解锁,其他进程解锁则会抛出IllegalMonitorStateException错误。但是如果遇到需要其他进程也能解锁的情况,请使用分布式信号量Semaphore 对象. 8.2. 公平锁(Fair Lock) 基于Redis的Redisson分布式可重入公平锁也是实现了java.util.concurrent.locks.Lock接口的一种RLock对象。它保证了当多个Redisson客户端线程同时请求加锁时,优先分配给先发出请求的线程。 RLock fairLock = redisson.getFairLock("anyLock"); // 最常见的使用方法 fairLock.lock(); 大家都知道,如果负责储存这个分布式锁的Redis节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。 另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。 // 10秒钟以后自动解锁 // 无需调用unlock方法手动解锁 fairLock.lock(10, TimeUnit.SECONDS); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = fairLock.tryLock(100, 10, TimeUnit.SECONDS); ... fairLock.unlock(); Redisson同时还为分布式可重入公平锁提供了异步执行的相关方法: RLock fairLock = redisson.getFairLock("anyLock"); fairLock.lockAsync(); fairLock.lockAsync(10, TimeUnit.SECONDS); Future<Boolean> res = fairLock.tryLockAsync(100, 10, TimeUnit.SECONDS); 8.3. 联锁(MultiLock) 基于Redis的Redisson分布式联锁RedissonMultiLock对象可以将多个RLock对象关联为一个联锁,每个RLock对象实例可以来自于不同的Redisson实例。 RLock lock1 = redissonInstance1.getLock("lock1"); RLock lock2 = redissonInstance2.getLock("lock2"); RLock lock3 = redissonInstance3.getLock("lock3"); RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3); // 同时加锁:lock1 lock2 lock3 // 所有的锁都上锁成功才算成功。 lock.lock(); ... lock.unlock(); 大家都知道,如果负责储存某些分布式锁的某些Redis节点宕机以后,而且这些锁正好处于锁住的状态时,这些锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。 另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。 RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3); // 给lock1,lock2,lock3加锁,如果没有手动解开的话,10秒钟后将会自动解开 lock.lock(10, TimeUnit.SECONDS); // 为加锁等待100秒时间,并在加锁成功10秒钟后自动解开 boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS); ... lock.unlock(); 8.4. 红锁(RedLock) 基于Redis的Redisson红锁RedissonRedLock对象实现了Redlock介绍的加锁算法。该对象也可以用来将多个RLock对象关联为一个红锁,每个RLock对象实例可以来自于不同的Redisson实例。 RLock lock1 = redissonInstance1.getLock("lock1"); RLock lock2 = redissonInstance2.getLock("lock2"); RLock lock3 = redissonInstance3.getLock("lock3"); RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3); // 同时加锁:lock1 lock2 lock3 // 红锁在大部分节点上加锁成功就算成功。 lock.lock(); ... lock.unlock(); 大家都知道,如果负责储存某些分布式锁的某些Redis节点宕机以后,而且这些锁正好处于锁住的状态时,这些锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。 另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。 RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3); // 给lock1,lock2,lock3加锁,如果没有手动解开的话,10秒钟后将会自动解开 lock.lock(10, TimeUnit.SECONDS); // 为加锁等待100秒时间,并在加锁成功10秒钟后自动解开 boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS); ... lock.unlock(); 8.5. 读写锁(ReadWriteLock) 基于Redis的Redisson分布式可重入读写锁RReadWriteLock Java对象实现了java.util.concurrent.locks.ReadWriteLock接口。同时还支持自动过期解锁。该对象允许同时有多个读取锁,但是最多只能有一个写入锁。 RReadWriteLock rwlock = redisson.getLock("anyRWLock"); // 最常见的使用方法 rwlock.readLock().lock(); // 或 rwlock.writeLock().lock(); 大家都知道,如果负责储存这个分布式锁的Redis节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。 另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。 // 10秒钟以后自动解锁 // 无需调用unlock方法手动解锁 rwlock.readLock().lock(10, TimeUnit.SECONDS); // 或 rwlock.writeLock().lock(10, TimeUnit.SECONDS); // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res = rwlock.readLock().tryLock(100, 10, TimeUnit.SECONDS); // 或 boolean res = rwlock.writeLock().tryLock(100, 10, TimeUnit.SECONDS); ... lock.unlock(); 8.6. 信号量(Semaphore) 基于Redis的Redisson的分布式信号量(Semaphore)Java对象RSemaphore采用了与java.util.concurrent.Semaphore相似的接口和用法。 RSemaphore semaphore = redisson.getSemaphore("semaphore"); semaphore.acquire(); //或 semaphore.acquireAsync(); semaphore.acquire(23); semaphore.tryAcquire(); //或 semaphore.tryAcquireAsync(); semaphore.tryAcquire(23, TimeUnit.SECONDS); //或 semaphore.tryAcquireAsync(23, TimeUnit.SECONDS); semaphore.release(10); semaphore.release(); //或 semaphore.releaseAsync(); 8.7. 可过期性信号量(PermitExpirableSemaphore) 基于Redis的Redisson可过期性信号量(PermitExpirableSemaphore)是在RSemaphore对象的基础上,为每个信号增加了一个过期时间。每个信号可以通过独立的ID来辨识,释放时只能通过提交这个ID才能释放。 RPermitExpirableSemaphore semaphore = redisson.getPermitExpirableSemaphore("mySemaphore"); String permitId = semaphore.acquire(); // 获取一个信号,有效期只有2秒钟。 String permitId = semaphore.acquire(2, TimeUnit.SECONDS); // ... semaphore.release(permitId); 8.8. 闭锁(CountDownLatch) 基于Redisson的Redisson分布式闭锁(CountDownLatch)Java对象RCountDownLatch采用了与java.util.concurrent.CountDownLatch相似的接口和用法。 RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch"); latch.trySetCount(1); latch.await(); // 在其他线程或其他JVM里 RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch"); latch.countDown();

优秀的个人博客,低调大师

东软集团与福州新区签约 数据价值化研发中心同步揭牌

11月19日,东软集团与福州新区(长乐区)签署重点项目合作协议。双方将充分发挥各自在信息技术、软件产品与服务、医疗健康、教育与人才培养等资源能力优势,在数字政府服务能力提升、数字经济产业创新、医疗健康产业发展、康养科技服务等领域开展全面合作,促进数字技术与产业经济的深度融合与创新发展。 福州是“数字中国”的策源地,“数字福州”一直走在全国数据要素价值化的前列,是东软重要的战略中心和数据价值化应用实践窗口。作为本次签约的重点合作项目之一,东软在福州新区(长乐区)设立计算机软件国家工程研究中心福州分中心、东软数据价值化中心、东软智能医疗科技研究院福州分院等研发中心。这是东软与福州新区(长乐区)深度合作的重要成果,也是东软解决方案智能化战略的关键布局和重要支撑,标志着东软将立足福州,加速推动数据+AI的技术研发和场景化落地,积极探索并打造可复制、可推广的数据要素价值化“福州模式”。 计算机软件国家工程研究中心成立于1993年11月,是我国第一个国家级软件工程研究中心,依托东北大学,由东软集团参与共建。此次成立的福州分中心,将依托计算机软件国家工程研究中心的强大科研实力,整合东软在医疗、康养、照护等领域的核心优势,以及福建省数字经济建设与产业发展需求,致力于打造集“前沿技术研究—关键系统开发—成果转化落地—产业生态构建”于一体的综合性数智医学创新高地,为福建省数字经济发展,产业数智化转型升级提供关键技术支撑与人才保障。 东软数据价值化中心将致力于推动数据要素与行业解决方案的深度融合,用数据和AI构建城市新基础设施,发展经济,服务民生、解决就业。作为东软从“技术提供者”向“价值创造者”转型的重要载体,该中心将通过AI赋能与平台化运营,围绕智慧城市、医疗健康、智慧养老、人力资源等关键领域,与客户及合作伙伴共同构建繁荣的数字新生态,共创可持续的商业与社会价值。 东软智能医疗科技研究院福州分院将作为以智慧医疗产业重大问题为导向、以人工智能技术突破为核心、以医疗数据价值化为方向、以开放共享和领域交叉为特色的“产学研医用”协同创新平台,推动高水平软件科技成果在智能医疗领域的转化与落地。通过医学与科技的融合,福州分院将积极开展临床实践的数字化、临床方法的工程化与平台化,用数字化技术支持新临床方法的探索与研究,为提升医疗服务、医院运营及医疗体系改革提供创新支撑。 数据是城市的重要资产,也是驱动经济发展、推动产业变革、增进民生福祉的关键力量。福州新区(长乐区)以数字经济为突破口,用数字化、智能化驱动城市高质量发展,并构建了良好的数字新基建和产业生态。此次,东软与福州新区(长乐区)展开深入合作,并快速将三大中心落户在此,正是得益于福州新区(长乐区)对促进数字经济、推动数据要素价值化发展的战略目标和坚定选择。 未来,东软将立足福州,积极探索数据价值化,助力福州打造成为全国数字经济发展的标杆典范,以数据之力推动产业优化升级,为区域经济社会的繁荣发展持续注入新动力。

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册