Tablestore+Delta Lake(快速开始)
本文介绍如何在E-MapReduce中通过Tablestore Spark Streaming Source将TableStore中的数据实时导入到Delta Lake中。
背景介绍
近些年来HTAP(Hybrid transaction/analytical processing)的热度越来越高,通过将存储和计算组合起来,既能支持传统的海量结构化数据分析,又能支持快速的事务更新写入,是设计数据密集型系统的一个成熟的架构。
表格存储(Tablestore)是阿里云自研的 NoSQL 多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务(PB 级存储、千万 TPS 以及毫秒级延迟),借助于表格存储的底层引擎,能够很好的完成OLTP场景下的需求。Delta Lake类似于支持Delta的Data Lake(数据湖),使用列存来存ba

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
通过EMR Spark Streaming实时读取Tablestore数据
本文将介绍如何在E-MapReduce中实时流式的处理Tablestore中的数据。 场景设计 随着互联网的发展,企业中积累的数据越来越多,数据的背后隐藏着巨大的价值,在双十一这样的节日中,电子商务企业都会在大屏幕上实时显示订单总量,由于订单总量巨大,不可能每隔一秒就到数据库中进行一次SQL统计,此时就需要用到流计算,而传统的方法都是需要借助Kafka消息队列来做流式计算,数据订单需要写入数据库与Kafka中,Spark Streaming 消费来自Kafka中的订单信息。而本文使用的Tablestore数据库可以直接利用它的通道服务功能,供Spark Streaming流式消费,进而计算订单的数量及金额,简化了整个流程,具体如下图所示本文将介绍一个简单的demo,流式统计Tablestore数据表中字段出现的个数。 前提条件 确保将Ta
-
下一篇
深入理解 Apache Spark Delta Lake 的事务日志
深入理解 Apache Spark Delta Lake 的事务日志 事务日志是理解Delta Lake 的关键,因为它是贯穿许多最重要功能的通用模块,包括 ACID 事务、可扩展的元数据处理、时间旅行(time travel)等。本文我们将探讨事务日志(Transaction Log)是什么,它在文件级别是如何工作的,以及它如何为多个并发读取和写入问题提供优雅的解决方案。 事务日志(Transaction Log)是什么 Delta Lake事务日志(也称为 DeltaLog)是Delta Lake 表上执行每次事务的有序记录。具体形式如下: yangping.wyp@yangping.wyp:/tmp/delta-table/_delta_log| ⇒ ll total 280 -rw-r--r-- 1 yangping.w
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2编写第一个Controller,响应你的http请求并返回结果
- 2048小游戏-低调大师作品
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- MySQL数据库在高并发下的优化方案
- Dcoker安装(在线仓库),最新的服务器搭配容器使用
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Docker快速安装Oracle11G,搭建oracle11g学习环境