您现在的位置是:首页 > 文章详情

深度学习目标检测系列:一文弄懂YOLO算法|附Python源码

日期:2018-12-14点击:859

       在之前的文章中,介绍了计算机视觉领域中目标检测的相关方法——RCNN系列算法原理,以及Faster RCNN的实现。这些算法面临的一个问题,不是端到端的模型,几个构件拼凑在一起组成整个检测系统,操作起来比较复杂,本文将介绍另外一个端到端的方法——YOLO算法,该方法操作简便且仿真速度快,效果也不差。

1

YOLO算法是什么?

       YOLO框架(You Only Look Once)与RCNN系列算法不一样,是以不同的方式处理对象检测。它将整个图像放在一个实例中,并预测这些框的边界框坐标和及所属类别概率。使用YOLO算法最大优的点是速度极快,每秒可处理45帧,也能够理解一般的对象表示。

YOLO框架如何运作?

       在本节中,将介绍YOLO用于检测给定图像中的对象的处理步骤。

  • 首先,输入图像:

    2

  • 然后,YOLO将输入图
原文链接:https://yq.aliyun.com/articles/679591
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章