Splunk: 2018年用机器学习应对安全挑战
在2018年,随着移动通信、云计算、物联网和交通运输等技术在数字化转型的推动下不断发展,我们将看到网络攻击面也会不断扩展和演变。在一个联网的世界里,到处都有可能成为黑客的切入点,不论是员工的智能手机,还是越来越自动化的交通工具。 黑客的攻击能力已经发展到足以攻破传统的预防和检测边界、区域和行业,这种局面没有丝毫放缓的迹象,而且黑客正在扩展攻击面使攻击范围更加广泛。2017年一些重大的数据泄露事件为新一波的网络钓鱼、身份盗窃和网络欺诈提供了肥沃土壤。攻击途径会越来越多,并采用各种各样的技术。而保护新领域变得更具挑战性,因为安全的周界正在消失,而边界总是在变化。 自动化将有助于减轻日常的安全任务负担,并帮助缩小技能差距 ISACA估计,到2019年,全球网络安全专业人员的短缺将达到200万,安全技能的差距在逐年拉大,没有放缓的迹象。为弥补技能差距,并帮助更多的采用先进分析技术的公司,自动化将成为首席信息安全官们的首选。通常首先考虑的是,对那些结果可信度非常高而且重复性的手动任务进行自动化。随着安全运营中心(SOC)自动化程度的不断提高,一级分析师将从繁杂的安全流程中脱身,不再去处理那些“红...