首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/661651

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

TensorFlow系列专题(三):深度学习简介

目录: ●深度学习的发展历程 ● 深度学习的起源阶段 ● 深度学习的发展阶段 ● 深度学习的爆发阶段 ●特征工程 深度学习的应用 ● 特征提取 自然语言处理 ● 特征选择 语音识别与合成 ● 图像领域 ●参考文献 一.深度学习的发展历程 作为机器学习最重要的一个分支,深度学习近年来发展迅猛,在国内外都引起了广泛的关注。然而深度学习的火热也不是一时兴起的,而是经历了一段漫长的发展史。接下来我们简单了解一下深度学习的发展历程。 · 深度学习的起源阶段 1943年,心里学家麦卡洛克和数学逻辑学家皮兹发表论文《神经活动中内在思想的逻辑演算神经》[1],提出了MP模型。MP模型是模仿神经元的结构和工作原理,构成出的一个基于神经网络的数学模型,本质上是一种“模拟人类大脑”的神经元模型(这里有必要说明的是,我们说的模仿其实更准确的说法应该是参考,计算机领域的“人工神经网络”的确是受到生物学上的“神经网络”的启发,但是两者相差万里,没有直接的可比性。)。MP模型作为人工神经网络的起源,开创了人工神经网络的新时代,也奠定了神经网络模型的基础。 1949...

NLPIR-KGB知识图谱引擎突破传统数据挖掘束缚

在当今信息爆炸的时代,伴随着社会事件和自然活动的大量产生(数据的海量增长),人类正面临着“被信息所淹没,但却饥渴于知识”的困境。随着计算机软硬件技术的快速发展、企业信息化水平的不断提高和数据库技术的日臻完善,人类积累的数据量正以指数方式增长 。面对海量的、杂乱无序的数据,人们迫切需要一种将传统的数据分析方法与处理海量数据的复杂算法有机结合的技术。数据的广泛存在性使得数据越来越多地散布于不同的数据管理系统中,为了便于进行数据分析需要进行数据的集成.数据集成看起来并不是一个新的问题,但是大数据时代的数据集成却有了新的需求,因此也面临着新的挑战. 1) 广泛的异构性.传统的数据集成中也会面对数据异构的问题,但是在大数据时代这种异构性出现了新的变化.主要体现在:①数据类型从以结构化数据为主转向结构化、半结构化、非结构化三者的融合.②数据产生方式的多样性带来的数据源变化.传统的电子数据主要产生于服务器或者是个人电脑,这些设备位置相对固定.随着移动终端的快速发展,手机、平板电脑、UPS等产生的数据量呈现爆炸式增长,且产生的数据带有很明显的时空特性.③数据存储方式的变化.传统数据主要存储在关系数据库...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。