轻松看懂机器学习十大常用算法
导读 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。 以后有时间再对单个算法做深入地解析。 今天的算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。 2. 随机森林 在源数据中随机选取数据,组成几个子集 S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别 由 S 随机生成 M 个子矩阵 这 M 个子集得到 M 个决策树 将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果 3. 逻辑回归 当预测目标是概率这样的,值域需要满足大于等于0,...

