优秀的算法工程师都是不用深度学习的
前几天面试了一个C9应届硕士生,模式识别专业,连续问好几个专业问题都没能答上来。 尴尬之余,我问他:「你没有什么理想吗?你现在最渴望的事情是什么?」 他转悠着大眼睛,不假思索道:「将kaiming大大的Resnet扩展到10万层,把kitti,COCO数据库检测识别任务提升20个点以上」 真没想到在面试中居然还有这种操作。 我问为什么这能成为现阶段最渴望的事情,他反问「你难道不为LeCun、Bengio和Hinton的执着精神所感动么?你难道不羡慕ILSVRC2012 AlexNet大放异彩么?你难道不被googlenet,Resnet的深邃思想所折服么?」 好有道理我竟无法反驳。 这么了解市场的工程师,一定是个不可多得的人才! 于是,我决定:不录取他。 这几年,深度学习在CV领域大行其道,不论是detection,segmentation,classification,还是stereo matching,pose estimation,深度学习把之前传统各种state of the art方法爆出翔。现今,算法工程师不知道经典网络,流行框架都不好意思和别人打招呼。 此现象仅仅局限于刚...