首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/462487

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

词形变换和词干提取工具(英文)

在信息检索和文本挖掘中,需要对一个词的不同形态进行归并,即词形规范化,从而提高文本处理的效率。例如:词根run有不同的形式running、ran另外runner也和run有关。这里涉及到两个概念: 词形变化:把一个任何形式的语言词汇还原为一般形式。(比如:cats--->cat,did--->do) 词干提取:去除词缀得到词根的过程。(比如fisher--->fish,effective--->effect ) 下面介绍几个用着不错的工具包: 词形变换 TreeTagger TreeTagger可以分析出文本中单词的词性(pos)和词语原型(时态变换、单复数变换) 示例 Tom has left Beijing for about 100 days. 解析结果 注意 不能解析的结果为<unknown> 数字不能解析的结果为@card@ 可以处理的语言有英语、德语、法语 官网 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ 使用(linux环境下) 下载工具包解压后进入目录cmd/,假设...

卷积神经网络——本质上是在利用卷积做特征压缩,然后再全连接

原文:https://www.zybuluo.com/hanbingtao/note/485480 写得非常好,可以细读 全连接网络 VS 卷积网络 全连接神经网络之所以不太适合图像识别任务,主要有以下几个方面的问题: 参数数量太多考虑一个输入1000*1000像素的图片(一百万像素,现在已经不能算大图了),输入层有1000*1000=100万节点。假设第一个隐藏层有100个节点(这个数量并不多),那么仅这一层就有(1000*1000+1)*100=1亿参数,这实在是太多了!我们看到图像只扩大一点,参数数量就会多很多,因此它的扩展性很差。 没有利用像素之间的位置信息对于图像识别任务来说,每个像素和其周围像素的联系是比较紧密的,和离得很远的像素的联系可能就很小了。如果一个神经元和上一层所有神经元相连,那么就相当于对于一个像素来说,把图像的所有像素都等同看待,这不符合前面的假设。当我们完成每个连接权重的学习之后,最终可能会发现,有大量的权重,它们的值都是很小的(也就是这些连接其实无关紧要)。努力学习大量并不重要的权重,这样的学习必将是非常低效的。 网络层数限制我们知道网络层数越多其表达能力...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。