《深度学习:Java语言实现》一一2.3监督学习和无监督学习
2.3监督学习和无监督学习
前一节中,我们看到即使一个非常简单的分类问题都存在无数的边界,然而,我们很难说究竟它们中哪一个是最合适的。这是因为,即便针对已知数据我们可以恰当地分类,这也并不能保证对未知数据能够达到相同效果。不过,你可以提高模式识别的准确率。每一种机器学习方法都会设置一个标准来进行更好地模式分类,决定最佳可能的边界——决策边界——从而提高识别的准确率。毫无疑问,这些标准使用不同的方法时差异很大。在本节中,我们将介绍本书所涉及的各种方法。
首先,从广义划分而言,机器学习可以分为监督学习(Supervised Learning)和无监督学习(Unsupervised Learning)。这两种分类之间的差异是机器学习使用的数据集是否加了标签,即有标数据还是无标数据。监督学习中,机器使用包含输入和输出数据的标签数据,并确定与之