首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/177670

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

雷锋网按:为了方便读者学习和收藏,雷锋网(公众号:雷锋网)特地把吴恩达教授在NIPS 2016大会中的PPT做为中文版,由三川和亚峰联合编译并制作。 今日,在第 30 届神经信息处理系统大会(NIPS 2016)中,百度首席科学家吴恩达教授发表演讲:《利用深度学习开发人工智能应用的基本要点(Nuts and Bolts of Building Applications using Deep Learning)》。 此外,吴恩达教授曾在今年 9 月 24/25 日也发表过同为《Nuts and Bolts of Applying Deep Learning》的演讲(1小时20分钟),以下是 YouTube 链接: https://www.youtube.com/watch?v=F1ka6a13S9I 一、深度学习为何崛起 吴恩达在开场提到:深

自然语言处理技术(NLP)在推荐系统中的应用

个性化推荐是大数据时代不可或缺的技术,在电商、信息分发、计算广告、互联网金融等领域都起着重要的作用。具体来讲,个性化推荐在流量高效利用、信息高效分发、提升用户体验、长尾物品挖掘等方面均起着核心作用。在推荐系统中经常需要处理各种文本类数据,例如商品描述、新闻资讯、用户留言等等。具体来讲,我们需要使用文本数据完成以下任务: 候选商品召回。候选商品召回是推荐流程的第一步,用来生成待推荐的物品集合。这部分的核心操作是根据各种不同的推荐算法来获取到对应的物品集合。而文本类数据就是很重要的一类召回算法,具有不依赖用户行为、多样性丰富等优势,在文本信息丰富或者用户信息缺乏的场合中具有非常重要的作用。 相关性计算。相关性计算充斥着推荐系统流程的各个步骤,例如召回算法中的各种文本相似度算法以及用户画像计算时用到的一些相关性计算等。 作为特征参与模型排序(CTR/CVR)。在候选集召回之后的排序层,文本类特征常常可以提供很多的信息,从而成为重要的排序特征。 但是相比结构化信息(例如商品的属性等),文本信息在具体使用时具有一些先天缺点。 首先,文本数据中的结构信息量少。严格来说,文本数据通常是没有什么结构的...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Nacos

Nacos

Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称,一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台。Nacos 致力于帮助您发现、配置和管理微服务及AI智能体应用。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据、流量管理。Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。