首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/83227

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

从主机到深度学习集群:IBM的语音之路

作为深入学习应用的一部分,语音识别和机器翻译领域已经产出了大量的工作,像我们所熟知的百度、Google和腾讯在这方面都有很多令人熟知的成果。虽然应用本身就是很有意思了,但更值得我们去研究的是当人们对于一些最难的机器学习问题有最新的思考时,研究人员是如何通过调整代码和系统来解决问题的。当我们想要去回溯语音识别和机器翻译的基础时,IBM给我们提供了部分最久远的历史,尽管可能这部分历史相对和深度学习相关性不是特别高。 IBM在语音和语言算法上的研究有36年的历史。IBM的Waston多模式部门高级经理Michael Picheny在很大程度上通过改变了代码和所需的系统推动了语音识别的发展。虽然像许多其他大规模机器学习玩家一样,IBM也大量部署了神经网络的GPU,但语音识别发展的道路同样还是漫长而复杂。先进的神经网络模型结合上能够实时和大规模运行的硬件,也就是这几件才出现的事。这个组合的出现致使IBM转向了语音算法的开发和部署。 Picheney回忆到,当年他加入IBM的时候,IBM是市面上唯一一家用统计和计算方法进行语音分析和识别的公司。其他公布都专注在语音潜在流程的物理建模上。“IBM是唯...

深度学习论文阅读路线图

1.深度学习历史和基础 1.0 书籍 1.1调查 1.2 深度信念网络(DBN) (深度学习开篇的里程碑) 1.3 ImageNet进展(深度学习从此爆发) 1.4语音识别进展 阅读完上面这些论文后,通过对深度学习模型(包括CNN,RNN,LSTM)的基础框架,以及深度学习如何应用于图像和语音识别问题的理解,你将会对深度学习的历史有一个基本的认识。下面的论文将带你深入理解深度学习模型,深度学习在不同领域的应用和前沿。我们建议你根据自己的兴趣和研究方向选择下面的论文进行阅读。 2深度学习方法 2.1模型 2.2优化 2.3无监督学习/深度生成模型 2.4RNN/ Sequence-to-Sequence模型 2.5神经图灵机 2.6深度强化学习 2.7深度迁移学习/终生学习/强化学习 2.8One Shot深度学习 3应用 3.1NLP(自然语言处理) 3.2目标检

相关文章

发表评论

资源下载

更多资源
Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse

Eclipse

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。